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PREFACE

Q"

The central thought in writing this hook has been the adjist-
ment of data, with emphasis on scattered portions of the topicthat
are difficult to find elsewhere, and which in my opinion arqiﬂesﬁined
to assumes increased importance in the future, Some-of the topics
that in the past have been thought to be impor’ga}ﬁ i statistics
and least squares are conspicuously ahsent heve\\of receive only
scant mention. It must be confessed that\this circumstance
ariscs partly by choice. o\

The intention has been to produce "‘book for reference, and
also for a text. Some differontial cqlglﬂas 1s used in the develop-
ment of the general theory in Chapter'IV, but it is not necessary
to be able to follow this developm%;nt in order to apply the recoms-
mended procedures, or to interpret the results of the calculations,
The main prerequisite is knawledge and experience in the subject
matter. 2

The reader must Q@t}rxpect to find in this book an aeccount of
statistieal methodsi{or all occasions. Tt supplements: it does not
supplant. ThereNsas not been in my mind any hope of covering
the entire field’pf least squares. For instance, recent contribu.
tions from .Qotelling, Wald, and Churchill Eisenhart have regret-
fully been‘omitted. An atterapt to include them would have
meant~an unpredictable delay in publication.

Ragsibly the reader will see here the interpretation of adjusted

ks in a new light, owing to my appreciation of the powerful
\ gtimulus of Shewhart’s contributions to statistical proeedures and
the philosophy of science. The student is first introduced to some
basic statistical concepts, and in particular he is asked to view a
method of adjustment as a way of arriving at s figure that can be
used for a given purpose — in other words, for action. An abun-
dance of procedures and skeleton table forms for numerical caleula-
tion ig provided for immediate adaptation to many kinds of prob-

m
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lems met in practice. It can be said that all of the recommended
procedures have been tested 1n use, many of them in mass pro-
duction. For the first time, 8 method for adjusting the ohserva-
tions {finding the calculated points corresponding to the observed
points) is provided for the cireumstance in which both the x and
y coordinates arc subject to error. The insidious phenomenon
of the instability of equations is introducced, even though inade®
quately, and the reader can at least claim acquaintance with @ty
The successtful introduction of sampling into the 1940 Cénsus of
Population, aside from bheing s manifestation of wisdom and fore-

sight on the part of Dr. Philip M. Hauser, Assistaub Director of

the Census, and Dr. Leon E. Truesdell, Chief~Statistician for
Population, brought with it 2 host of unsolved Statistical problems.
One of these was the adjustment, of sample-frefjuencies to known
marginal totals, solutions to which are fgiven in Chapter VII.
With the subsequent rapid growth of sawipling in the conduct of
many social and economic surveys of 10¢al and national scope, the
inclusion of such methods may tyzn® sout to be timely.

Different kinds of problems,of adjustment (e.g., geodesy on the
one hand and curve fitting on the other) are hore unified and
brought under one generghprinciple and one solution. The dis-
tinctions hetween dl{’fhrent kinds of problems are left where they
belong, namely, in the conditions that the adjusted values are
subjected to (Che¥V).  Unfortunately and inadvertently, intellec-
tual gulfs have grown up between writers in statistics, least squares,
and eurve. ffhing. Fach of the three groups has gone its own
way, re&@coverlng developments long since discovered by the
othersy ‘ot — what is worse — not rediscovering them. Here the
rea,der “will find contributions from all three groups, and he will
peréeive that they are complementary.

“The methods of this book were developed over a period of
sixteen years in the government service, during which I have had
the pleasure of assisting colleagues in many branches of science.
The manuscript originated in notes kept during my statistical
practice; and to meet the need of text material for classes taught
in the Graduate Rehool of the Department of Agriculture. A
mimeographed edition of portions of this hook appeared in 1938
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under the title Least Sguares as & publication of the Graduate
School. Many of the caleulations and procedures were worked
out by my wife, Lola 8. Deming. A number of helpful comments
came from Professor W. G. Cochran, who kindly read the galley
proof. Extensive contributions in the text, and help in reading
proof, have come from several of my colleagues and assistants i

the Census, notably Mr, Samuel W. Greenhouse, now WIt};\he

armed forces, and Mr, Jacob E. Lieberman. \ N\
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PirT A
SOME SIMPLE ADJUSTMENTS

CHAPTER I O
ON THE MEANING OF ADJUSTMENZ.

N

1. Some remarks on the problem of adjustment."’;.\Before learn-
ing how to use least squares, or any other method of adjustment,
one might rightfully ask what is accomplished”by procedures of
adjustment, and what is the purpose of ysitlg them?

In the first place it must be recognizetlthat any measurement is
the result of doing something — applymg some operation. Some
procedurc is carried out, and some, THumber is written down as a
result. In the second place it must be understood that the purpose
of taking the measurement ds to use it for doing something. The
object of taking dala is to pmm'de a basts for action.

If you were to meas{me % table with the idea of ordering a plate
glass top for it, ygu would use a rule, tape, or yardstick, and
measure it. Theprocedure of laying down the rule, counting the
number of feeth, estimating the number of inches and fractions of
the last fogty and recording the figure, constitutes the operation of
measurem\@nt The action, in this ease, consists of ordering a plate
glass of\@ certain size. The measurement provides s hagis for the
a;gjﬂdn If the measurement is wrong by so great an amount that

eglass is unfit for the purpose intended when it arrives, then the
figure has Ied us to the wrong action.

"You might repeat the operation of measurement, especially if
the length is required to the nearest sixteenth of an inch. What-
ever the exactness required, the problem is fundamentally the
same. One takes a measurement — that is, one carries out an
operation — and thus gefs a certain result (4 number), and writes

1



2 SOME SIMPLE ADJUSTMENTS [Brec. 1)

it down. Why should he repeat the operation? The answer may
be contained in one or both of two statements: (a) to get a better
value for the purpose intended, by adjusting the observations;
(d) to gain. some assurance that he is following the procedure
intended. The latter is often more imporiant, though also more
difficulé. Metheds of adjustment assist us in both questions.

As has been said above, the object of taking date is to provide
a basis for action, and an adjusted value is a derived number thatcan
be used for the purpose tniended, if it is possible to be had fmﬁl"the
dafa presented for adjustment. Ao

The principle of least squares provides a method fgn, getting an
adjusted value. Tt can be applied whether or ndt‘the data are
worth adjusting, but the results are useful only svhén the data are
‘good in the first place; no purely mathematical procedure can
malke a good figure out of any number of$ad ones. Data not in
statistical control —i.e., not random.,‘a:;’:e not usefully adjusted.
It is important to know when data are'worth adjusting. A partial
answer will be arrived at in this sectfon.

Suppose that one were to rppés’ft the aperation of measurement
n times, thus getting » numbers Tor the length of the tabie, denoted
88 X1, Ty, T3, * * ¥ T 'IL];@ problem is to adjust these chservations,

L )

/

Observttion number Oheerved value
PN \ ;- é 4]
A\ . Fo]
' ’;\ 3 43
O ‘
.\’\
O n Ta

i.e., to derive from them a number that can be used as the length of
the table, for ordering the glass. Assuming that the procedure is
being followed correetly, one must answer the question: would the
mean of the » measurements be better than any one of the measure~
ments drawn at random? Would the median of these n observed
values be better than the mean? Would it be still better to



fCa. 1] ON THE MEANING OF ADJUSTMENT 3

average the greatest and least of the n observed values? Why not
just take any one of the observed values and use it? We shall
proceed to some considerations that may help {o provide usefu!
answers to these questions.

A statistieian is expected to make better adjustments than any-
one else. 'That is his business. Howover, the statisticlan must
insist that he be rated, not on some individual adjustment, but in a.<{
population of adjusiments, that is, on a “ long run ” of adjustmeats.
If, in the long run he hag a greater perceniage of satisfaetory redults
than anyone else could have gotten, then his method of adjustment
is better. In isolated instances, his results may not be éS"good 88
those obtained by someone else, yet his method may be better in
the sense just stated. )

Any measurement or any adjusted value is &ypredietion in the
sense that the number that we are going todge for the length of a
table is about what we should expect auyo:lé else to get if he were
to measure the table:  As a matter of fagt, every empirical scien-
tific statement is a prediction, becausey ho matter how many times
it has been confirmed in the past.Jtis always subject to future eon-
firmation by experiment, Any\measurement is but one term in a
sequence of terms (results ) £hat actually or theoretically might yet
be taken hy repeated appli&&tions of the operation of measurement.
It is important to realize that it is not the one measurement, alene,
but its relation to the rest of the sequence that is of interest. We
should not risk ‘dési"gna.ting a measurement a measurement if we
did not thinkythat it could be duplicated within stated limits by
future mea§hréments, and that future action would bear out the
usefulngsbf the number so designated.

2, Randomness and the importance of order. In attempting to
amg‘n,{?:r the questions that have been raised in the preceding para-
geaphs, let us make a chart, showing the results of repeating our
operation of measurement. Let us plot the observed values as
ordinates and the observation numbers as the abscissas. Suppose
the chart has the appearance of Fig. 1. The observations show a
trend. Under such circumstanees should we take the average,
median, or any other function of these observations for an adjusted
value? The answeris no. Something is wrong with the procedure
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or the measuring instrument. The first thing to do is to find out
what the trouble is.

Let it be noted that the trend is recognizable only when there are
a number of measurements. If only one or two measurcments had
been taken, the trend and the existence of any difficulty would not
have been recognized, and the glass ordered would not fit. ~

Now let us do something else.  Suppose that each number in the
above table is written on a poker chip. Let these chips be phySJ-
cally similar, put into a bowl and thoroughly stlrred an& then

ls

af-9fing * o L, , . R4
LN .' )
4f1-9%in. 4 : \MMRE
u D
3 R
= N\
a S
7] ~
=
14 ™
& \
g \
[}
Q .‘“
AN
¢ \J
e e e DTN .
hN2*3456 7839100l 2131415 n
Q" ORDER OF OBSERVATION

Fie. 1. A chbt” showmg the ohserved value plotted against the observation
\“\ " number. ‘The observations exhibit a trend.

dragm one at a time with shuffling between draws. With eare,

the.s operation of getting numbers will be a random operation, and
\Wﬂl accordingly produce a random sequence. Ome actual random

operation gave the sequence of numbers shown in Fig, 2,

Just what is the difference between Figs. 1 and 2? The numbers
plotted are the same, i.e., {or every number shown in one chart,
there is the same number in the other. What is different, then?
The order of the observations is different. The original order has
been destroyed by drawing the numbers from a bowl, and there is
no more trend. On this account alone, the acfions that would be
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taken on the basis of the two charts are entirely different. The
action based on the series of » measurernents shown in Fig. 1 would
be first to try to find out what is the trouble with the procedure of
messuretnent that produced the n observations. Ordering the
glass would come second: we should defer ordering it until we get
better (more uscful) measurements. On the other hand, if Fig..2¢
had been the result of the actual measurements, we could go ahead
and order the glass at once. If is not alone the observed vélugs
that count; their relation fo one another in the order of proc{u&tﬁm i8
4ft-93in. 4 . ¢

* . . . NN

44t~ 9hin. -

OBSERVED VALUE DRAWN

284567869101 1213415
o d CRDER OF DRAWING
Tia. 2. The o @ervatmns here exhibit randomness, Thesg are the same

nwnbers as sk\own in Fig. 1, but their order hag heen made random by draw-

‘,\\~ ing them from = bowl.

also.itpportant.
~ When the trend of Fig. 1 occurs in actual observation with a

éasurlng instrument, we immediately suspect something is wrong,
and we try to find the difficulty. But if a trend like this were to
oceur under the ideal conditions of sampling {drawing the numbers
from a howl), we have no suspicions, but simply aceept this result
as one of the things that is going to bappen once in a while.

Let it be noted that trends and other patterns resulting from

repoated cheervations oecur not only in physlcal meagurements,
but also in the social sciences. For instance, in a survey that is
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repeated monthly, if a person repeatedly answera the same ques-
tionnaire, his angwer may vary from time to time, and may even
show a trend, even though his status in life, measured by ususl
standards, has not changed appreciably. Repetition alone may
be the eause of more careful atiention to the details of the ques-
tions, gradually bringing about a different evaluation of the
same cireumstances, vesulting in a trend. Moreover, repetition
of a question month by month may actually produce a trend; =
for ingtance, if a housewife weighs out her flour week by week in
order to record for some survey the amount she nses, she may™),
become flour eonscious and gradually use more or less than.ghe”
did before. g O

~ Results like the points in Fig. 2 show stability, ov)wandomness,

and can be statistically adjusted to get a figure ghat can be used.
1t i8 0 be noted ihat a rather large numberdidmeasurements is
required before one can say that the operatlﬁn of measurement is
random., Visual inspection of the charﬁ\ls often sufficient, but
the more dependable Shewhart criterfolY of randomness! can be
used if desired. The main thing islte have enough observations,
and to plot them. With enoughlexperience in using a particular
method of measurement it m;&&',h’ot be necessary to do this. The
point is that before the observations can be adjusted, they must
arise from a random opefation.

The adjustment {Ktléélf’ may be a very simple procedure. It
might consist of mierely picking out any one of the n observations
in Fig. 2 by loty \as,"one might be willing to do il (after randomness
is assured) the measurements are all secn to lie within a band that
is narrower than the requirement. FEwven if one of the n observa-
tions 1s®cked out by lot, the other observations of the sequence
ure not thrown away; they all provide information. Together
they ‘perform two functions: (i) they help to demonstrate the
{ rindomness of the operation of measurement, and (ii) they show

1 The Shewhart criterion of randomness is desoribed in his book entitled
Economic Conirol of Quality of Manufactured Produet (Van Nostrand, 1031);
also in his book Statistical Method from the Viewpoint of Quolity Control {The
Graduate School, Department, of Agriculture, 1939). It is deseribed and used
in the pamphlet entitled “ Control Chart Method of Controlling Quality during

Produgtion ” (American Standards Association, 20 West 30th 8t., New York,
1942),
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that the band of variation is so small that any cne of them alone
will suffice.

The method of ad,]ustmen’t. might of course be slightly more
complicated. One might take the mean, or the median, of the »
observations. The mean is in fact the least squares adjustment,
as we shall learn in Chapter II. One could also conceivably split

. the difference between the greatest and least of the observations
to get an adjusted value,

The advantage of these slightly more complicated methods Of
adjustments is that if they are carried out for repeated setsof n
measurements, the adjusted values so produced will fall within a
narrower band than the band corresponding to the ofiginal obser-
vations. For most random operations, the least dquares adjust-
ments will show the narrowest band of all, aandsthis is a very prac-
tical argument in favor of least squares. ¢ o

3. Performing a simple adjustment, \&inple problems are al-
ways best for illustration: if we can understaﬂd simple problems,
there is some hope that we can underd®
stand more complicated ones. «One
of the best to look at from thestand-
point of adjustment is asplane tri- 2
angle in which the threg(augles have
been ohserved by soméangular meas-
uring instrument, §2eh as a transit
or & protractofn\dn the triangle of
Fig. 3 the thrpe angles have been
measure o“be each, with the results
shown i\ he table. The observed
anglos’ add up to 179°30": Suppose
we\ demand that the angles be ad- ¥ia. 3. The three anglesof a

ed 50 that their sum is 180° ex- triangle have been mesasured.
actly. Two methods of adjustment The sumof the adjustedangles

. . ig forced to he 1807,
might at times suggest themselves.

Method 1. Distribute the 30" deficiency amongst the three
angles in proportion to pize.

Method 2. Distribute the 30’ deficiency equally amongst the
three angles.

3
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Adjusted
Angle Obaserved
Method 1 Method 2
1 120° 07* 120° 27’ 120° 17’
2 38 23 38 29 a8 a3
3 21 D 21 04 21 10
Sum 179° 307 180° o' 180° ¢

N
7 '\ N

"N

The two methods of adjustment give the results shown’in the
table. Which do you prefer? Rither is simple enough, and your
preference will be easily settled, depending on the{ cireumnstances.
If the protractor is cotrectly graduated, then the measurements
of an angle may be randomly distributed about its true value,
resembling ip a fashion those in Fig. 2. U\g&r’ such circumstances
ong would prefer Method 2. If on thédbher hand the protractor
had been stretched in its manufacthss so that the 180° index
actually extends through more th&n half a circumference, then,
though the measurements of any*angle be randomly distributed,
they will be distributed aroung'a value that is too small. Under
such circumstances, angwlay measurements need to be corrected
by small additions, pro;’yb}tionate to the size of the angle measured.
This is what Methodealls for.  We can not say that either of the
two methods is bigbter; cach has its place, depending en the cir-
cumnstances. MNEE Sec. 5 slso.)

As we shallsee later (See. 31), Method 2 is the loast squares
adjustmenit) inder the assumption that the protractor is correctly
gradudted. Thus, the method of least squares seems to lead to a
simple and common sense procedure. It will be so wherever the
y 'gi'osblem is simple enough to visualize. In a later chapter we shall
véturn to the problem of the triangle, in which the least BOUATES
procedure will be worked out for more eomplicated situations, in
which the angles have becn measured more than once, or an unequal
nurcher of times, and the sides may have heen measured also
(Sec. 34; pp, T4 fi.).

Another simple example is a line that has been divided into
segments, and some action is to be based on their lengths. The
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observed lengths of the segments do not add fo the observed length
of the whole line, and an adjustment is required. A very simple
procedure would be to apportion the excess or deficiency equally
amongst the segments and the whole line; if the segments are in
excess, their observed values will each be decreased by a certain
amount, and the observed value of the whole line will be increaged™\
by the same amount, this amount being the excess divided\by
n 4 1, where #n is the number of segments, ‘This ad,]ustment is
very easﬂy applied. It actually is the least squares adjustment
More complicated problems of this _ N R
type occur when the segments are & @ e E
not all measured the same number Fie. 4, <Fhojline A and its
of times, or are measured with instru- foursezwientshaveheenmeas-
ments of different precisions. Such um‘I »Thie sumoftheadinsted
. problems will form the object of later O ents must equal the ad-

) Justed over-all length.
attention, but we pause here to note ()
that in this simple case the least aquares procedure provides an
easy and satisfaetory adjustmenty) (See Exercise 2, p. 86.)

In more complicated problems, it js not so easy to picture what
happens in the adjustmentybut we shall be able to apply the same
pringiples in working thm out. Problems of curve fitting are
essentially the sam Qature as the geometrie illustrations just
given: in each prob m the adjustment consists of altering the
observed valyegyln’ order to satisfy certain conditions that we
decide to impo3e on the adjusted values.

4. Leastsghares adjustments often easy. It is sometimes sup-
posed thatthe method of least squares is more difficult than most
meth()ﬂs to carry out. 'This is not always so; least squares is often
‘theﬁlmpiest and most satisfying of all known methods. In many
pi'o"blems, normal equations are not required. It all depends on
what conditions are to be imposed, or how rigidly the user insists
on fulfilling them. There are some problems in which least
squares provides the only known method at any price, as for in-
stance, complicated problems in {riangulation and geodesy; also
the adjustment of the observations in curve fifting when the
weights vary and more particularly when both coordinates are
subject to errors of observation, We have already seen some
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examples in which the least squares adjustment is simple and
direct; for instance, it was noted in connexion with the adjust-
ment of the observations in Fig. 2 that the least squares adjust-
ment happens to be identical with the mean of the n chservations
—and calculating a mean is usually a simple encugh procedure.
We saw likewise that in the adjustment of the triangle by Method 20\
the least squares adjustment turned out to be merely the gqgal
distribution of the deficiency amongst the three angles, The least
squares adjustment of the segments of the line in the last\séction
is moreover simple cnough, again being merely an eqialdistribu-
tion of .the deficiency or excess of the segments. ¢Soudents who
have fitted polynomials in the form of orthogonalpelynomials will
realize that the method of least squares, thoug&perhaps notsimple,
is at least a routine matter, not involﬁni‘ghe'solution of normal
equations. There is another illustratiomy eontained in Chapter
VII, in which tables of frequencies obtained by sample surveys
are adjusted to expected margina-]jtbtals that are obtained from
other considerations, such as a témplete count; here again the
adjustment can be made rapidly without the solution of nermal
equations. One could go om and point out many other problems
in which the least squagesadjustment is about as simple to carry
out as any that coulddbe devised, in view of the conditions imposed
on the adjusted valges.

b. Statistical ghethods and correction for biases. There is
another kind ‘of adjustment, which might be referred to as an
adjustmentfor bias. Laboratory instruments are often calibrated
againstseistandard, and a correction factor applied to the measure-
ments., “Similar corrections are often Tequired in eanvasses in the
social“seiences. A mailed questionnaire, for example, usually

Srefuires corrections, because not everyone responds, and those
that do not, form 2 elass distinet from those that do. Moreover,
the responses in a mailed guestionnaire will be different from the
respenses in an interview questionnaire, even for questions worded
identically. Increasing the size of the sample, or the number of
observations, will decrease the sampling errors, but not the biases.
A statistical adjustment is applied primarily to effect compromises
with statistical fluctuations (sampling errors and errors of observa-
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tion). A bias is never discovered or measured, nor has any mean-
ing, unless two or more distinet methods of observation or experi-
mentation are compared with each other. Statistical adjustments
of data, together with the Shewhart statistical methods of quality
control, are powerful tools in the detection of biases, difference
in performance, deterioration or other changes in quality, the
standardization of quality, and s host of important related
problems, N\

Simultaneous adjustment for bias and statistical fuefustions
can often be made, as when sample frequencies constititing obser-
vations on the breakdown of a certain class of the fopulation are
adjusted fo the known total of that class (Ch. W)y or when a line
is forced to pass through the origin because $heory and other
related knowledge of the subject tell us tQE\t\it should (Sec. 15,
p. 31). In the triangle problem of S¢etipn 3, Method 1 simul-
taneously corrects for a stretched or ‘edmpressed scale, and for
statistical fluctuations of the measutéments; but we should not be
in position to choose between Méthods 1 and 2 without knowing
somehow or other from othersggperience with it whether the pro-
tractor scale . Is uniformly(8tretched or compressed, or 4i. can be
considered perfect, ¢\

6. Repeated experimental results necessary for establishing a
scientific law, It would be splendid if all action required in social,
economic, and infstrial planning could be based on scientific laws;
but actuallysounany of the laws remain yet to be discovered that
most actiofl mist necessarily be taken on the basis of knowledge of
the subfect matter in related fields, Of course, it is true that
actipﬁ&s often prompied by prejudices and whims, even when a
s&i@n\tjﬁc basis for sction exists, but this is a failing of human

“hature, hardly a problem in mathematics or statisties,

No one experiment by itself establishes a law, or a valid basis
for action, It is the consistency of repeated results under a variety
of eonditions that establishes a law. The method of least squares
can be applied to = single set of data, but no matter how earefuily
the least squares adjustment is carried out, the curve so fitted, or
the observations so adjusted, do not have scientific validity unless
there is other evidence &t hand to show under what conditions the

Q"
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same or similar results will be obtained, and how these eonditions
are to be brought about and controlled.®

A long series of experiments may provide the additional evidence
that is needed, particularly if the different experiments of the series
are performed under a variety of conditions (different tempera-
tures, climatic conditions, economic levels, ete.). If the data im\
each experiment are random or nearly so (see Fig. 2 and diseussion),
and if the adjusted coordinates or the adjusted parameters dn.the
fitted curve tarn out to have about the same values, tlme after
time, without fail, a scientific law may be eonsidered#stablizhed,
and the condltlons under which it holds may be stated

Thus, {0 be more specific, it is not the standard® ebror of & slope,
as estimated from a single set of data, but rather the persistent
smallness of the standard error, or the persist}n’o recutrence of the
slope, in experiment after experiment, uﬁder a variety of condi-
tions, that really attaing sclentific sgniﬁcanee. By this we mean
that wseful predictions can be made) regarding future slopes, and
that we can say under what condrtrone these slopes will be main-
tained. Repeated patterns limaf the basis of scientific significance.
Repeated and repeatable 'geod' fits, and repeated and repeatable
statistical signjﬁeance, eptablish a scicntific law. In science one
is usually if not alwag® studying the underlying system of forces
(social, economie, n‘:%he,meal chemical, or whatever), in order to
take action Qe the cause system, to rcgulate fufure product.
Measurements  or surveys already carried out on some one particu-
lar batch, of. produet {(population of people, lot of industrial produect,
ete.), liwlde part but only part of the chain of evidence that is

requlred for predictions with regard to data of the future. The
\

. it being justly esteemed an unpardonable temerity to judge the
Whole course of nature from one single experiment, however accurate or
certain.’”  From Hume's An FEnguiry Concerning Humen Understanding
{London, 174R), section vii, part 2.

“ But to argue, without analysis of the instances, from the mere fact that a
given event has a frequency of 10 pereent in the thousand instances under
observation, or even in a million instances, that . . . it is likely fo have a
frequency near to 1/10 in 2 further set of ohservations, is . . hardly an argu-

ment at all” J. M. Keynes, Treatise on Probability (Maemﬂlan 1929),
p. 407.



{Cu. 1) ON THE MEANING OTF ADJ USTMENT 13

operationally verifishle meaning of a scientific law is a prediction
of future results, not a statement of past results.

Every experiment in a series should be designed and performed
with care and judgment, even if many more experiments are
required. Likewise, the data of each experiment should be sym-
marized in the most efficient manner for comparison with the™\
other sets of data. The importance of statistical theories and ths
design of experiments ecan not be overemphasized. Under gondi-
tions of randomness, the method of least squares usually grovides
a good summary of an experiment, by preserving n:gor;t of the
information in the data, provided the right curve is heing fitted.
In some problems the method of least squares is simple and easy
to apply; in others it is difficylt {(Sec. 4). Nh'Some kinds of
problems, no other method is known. Whabuhethod of adjust-
ment 1o use (least squares, free hand curved; ete.) is as much a
matter of economics as seience, and musb.be decided on the basis
of time, costs, and results, It is more iniportant to insist on having
a series of experiments carried outediiler o variety of conditions,
than to insist on using any partiealar method of adjustment,.

7. The nature of an adjustmert. A student of statistical theory
may well wonder how the@fjustment of data, differs from other
statistical caleulations, afighin particular the calculations that are
pexformed in problems of estimation, A problem of adjustment
might be identified™s a problom in estimation in which the end
product is a set @b adjusted values, which have been forced (ad-
justed) to sabigfy’ certain conditions.

1t is thesesgonditions that distinguish one problem from another.
In the trigngle problem of Section 3, and later on in Sections 31
and 34\the sum of the adjusted angles is forced to be 180°, [n
adj@Sting the line and line segments of Section 8, the sum of the
Adjhsted segments must equal the adjusted total length of the line.
In curve fitting (Tigs. 16 and 17, pp.132 and 133) there are likewise
conditions to be fulfilled, beeause the adjusted ohservations are
forced to lie on a so-called caleulated curve. The principle of
least squares (Ch. IT) remains the same in all these problems, but
the different kinds of eonditions imposed on the adjusted values
lead to different procedures in certain preliminary stages of the
solution,



CHAPTER II
SIMPLE ILLUSTRATIONS OF CURVE FITTING

¢\

8. The principle of least squares. Before going into the géheral
problem of the adjustment of observations (Ch. I'Vj'),\it will be
helpful to apply least squarcs to some simple applie@tiéhs in curve
fitting. Fortunately, simple problems afford {okarly as much
opportunity for thought in the field of statistibal inforence as the
more complicated ones do. In all of the sshmple or complicated,
the principle of least squares requires t. :me'n*imz’ze'ng of the sum of
the weighted sguares of the residuals. “This sum may be written as

S =Rw res? (1)

The summation {(denoted by;“ﬁ) of the weighted squares of the
residuals is to be taken ovemall the observations that are subject
to error.  Sis called the\"sum of squares,” or, more explicitly, the
“sum of the woighiéd)squares.” Weight will be definied in Sco-
tion 11. o\

In curve fittiAg) either or both of the and y observations may
be subject %oCérror. Accordingly, § will be written explicitly
for the » rgsiduals alone, or the y residuals alone, or both, depend-
ing iﬁﬁé experimental conditions. For instance, later on,
wl}ep'bot-h the x and y coordinates are in error wo shall write
AN

a \Y 8= 2 (w=Vx2 + wyvyz) (2)

Here V, is an z residual, and ¥V, is a y residual (see Fig. 17 on p. 133).
If only y is subjeet to error, the first term on the right is to be
onitted, and if only z is subject to error, the second term is 4o be
omitted. In this chapter we shall be content to deal with a few
stimple problems in which only one coordinate has error.
The principle of least squares is the minimizing of 8. The
14
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method of least squares is a rule or get of rules for proceeding with
the actual computation. Here we shall try to learn both, and how
to interpret the results.

We may now define x* by the equation

s .
== (3)
a 2 A
NS ©
The symbol o denotes the standard error of observations of unit
weight (See. 11). "G

Now since « is 4 constant in any one problem, XQ'\IS 4 minimum
when 8 is a minimum; hence we may think ofJeast squares not
only as the minimizing of S, but alse of x?‘: Least squarcs may
also be considered the minimizing of the @timate o(ezt), to be
introduced in Section 13, Another Way.@hooking at the problem
is to say thai the principle of least squares is the maxdmizing of
P{x), and that we seek the solutiolrthai gives the greatest prob-
ability on the chi-test. ,.j"t

Remark. Tt is interesting to recall Gauss’ Theoria Motus
statement of the prigs’{ple of least squares, In particular his
recognition of the gecasional need {or compounding errors of
different djmensibg§ {seconds of are, seconds of time, Jength,
weight, ete.). ¢(In curve fisting, this compounding is exempli-
fied as explaiiied above, namely, by taking aceount of the errors
in both the  and i coordinates, when both are subject to error,
just ag bne would take account of the errors in both the angles
and\@Gle‘sides of a triangle (Sec. 34). The following guatation
frdmiCrauss is taken from his Theovia Motus Corporum Coelestium
Hamburg, 1809), Art. 170. His & is weight, written in Eq. 2
L Nand elsewhere as w. His sum hhww + 2R’y + RVR0Y7 +

\ Y7 .-+ is the § of Bq. L.

... guamobrem systema maxime probabile valorum pro
quantitatibua p, g, v, s, ete., id erif, ubi aggregatum Akw -+
Ehivy + BT + ete., ie., wbi summa quadratorum dif-
Jerentlorum inter valores vevere observulos ef computafos per
numeros qui proecisionis gradum metiuntur multiplicatarum fil
minimum. Hoe pacto ne necessarium quidem est, ut func-
tiones ¥, ¥/, V", ete., ad quantitates homogeneas referantur,
ged heterogeneas quoque (e.g., minuta secunda arcuum ef
temporis) repraesentare poterunt, sl modo rationem errorum,
qui in gingulis aeque facile committi potuerunt, aestimare licet.”
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This was Gause’ enunciation of the principle of least squares
in 1809. In 1823, in his Theoria Combinationis Observationum
Errortbus Minimis Obnoziae, he took the view that one seeks
values for the adjusted observations and parameters which
render the variance of the parameters a minimum, Both points
of view are arbitrary, and are justifiable only in experience.
Fortunately, both points of view lead to the same identical least 2\
squares solution. An artiele by A. C. Aitken and H, Silver-
stone, “ On the estimation of statistical parameters” (Pfgd)
Royal Soc. Edinburgh, vol. Ixi, 1942: pp. 186-194), is i.n_strt&tztivé.

9. The simplest example of curve fitting — the“.si’ﬁ"gle sample.
Let a single sample of » controlled! (randomk&bservations be

x
K
34 A
& - /

3 .’.’. *
7 A et xek
2{ * N .
R EEPAN
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30, Y

L) ' 2 3 45 6 7 8 3
\ <2

Fie. 5. Ten \bbservatlons

* ¢ 2y, Tgy ¢, L0

NS
of eq\ui\ﬁrecision (equal weight) are made on an unkpown magnitude o
Thetree points are connected by the simple relation = = @, hence z ~ a is
phBeurve to be fitted. The least scfiuares value of o turns out to be Z, the

“Ntaean of the ten observations. # = « is the true curve,” and z = % is the
“< ealoulated curve.” The caleulated pointy are shown by the crosses; they
all lie on the ealeulated curve. ‘This s the simplest problem in curve Gtting.

Compare with Fig. 6, page 25, sud with Fig. 18, page 132.

made on some magnitude, such as the length of a table. Suppose
that it is desired to derive an adjusted value @, from these observa-

'For a partial explanation of controlled observations and randomness,
see the first chapter.
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tions. We look upon the problem as one in fitting the curve
T =q (4)

to the n cbservations. This is the simplest, of all curves; it is.
merely a horizontal line (Fig. 5). It contains but one adjustable
consignt or parameter, namely, @. This parameter o is now to b\
detcrmined. The method of least squares will be filustrated.

The problem is to minimize S, the sum of the weighted S‘I{lihT\GS
of the residuals. The observations are all of equal weight, since
by supposition they appear to have heen drawn all fromi™he same
bowl. We shall therefore let all the weights he iinit-y. If »
denotes an observation, then # — « is the correspﬁ‘xg}ling restdual,
since, by definition,

w\J/
Residual = Obscrved — Qgg@u}ated
The square of the residual will be (z ~ :a,)'é; hence the sum
8= 2.@,;"‘“0)2 (8}

will be the quantity to be imiditnized. The sign 3. means that
the squares of all the I‘CSid{lﬁ]S are to be summed,

Here the coorrl‘lla'\écs of the points are merely the ordinal pum-
bers of the obscrvg),t}ms (Ist, 2d, 3d, ote.). The y coordinates are
of course withoutigrror here, o only @ residuals sppear in the expres-
gion for §. 2N

Now t-h@wi;’la\observations, having once been made, can not be
changed\:\\’fhey are constants, The only variable in Eg. § is the
adjustable parameter g, By giving various values to &, S is made
to_ ke on various values. There will be & minimum, and it will
Gcchir when the derivative

B - 2Xe-a ©)
'

vanishes, that is to say, when

Le—a)=0 or Tz—na=0
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The least squares value of @ is accordingly
1
¢ =—- 2 &= %= the mean ™)
n

So the horizontal line @ = % in Fig. 5 gives the smallest possible
value to the sum of the squares of the residuals, and hence to x°
The line z = % is the * caloulated curve; it is the ““curve™
2 — o fitted by least squares. On this line Le all the * calculated
points,” these being the least squares estimates of the 'ob}‘}erved
points. {In this problem, the caleulated peints all haye-the same
ordinate, namely, Z. Compare Fig. 5 with Fig. 17, pH133.)

The fit of this line may be judged by compari‘x‘% the value of
%/ — 1) with ¢%. This is done by looking\ip P(x) for the
observed value of x® corresponding to n —/hdegrees of {reedom.
This subjeet will be touched upon agaipin Section 13 and else-
where. Tables for the nse of the chi¢teet will be found in R. A,
Tisher's Statistical Methods for Research Workers (Oliver and
Boyd). R )

Note that the value of ¢'isnot required for the application of
least squares, because hatever o is, x* is 2 minimum when 8
is o minimum. o did'wet ocourin Eq. 6. o is required, never-
theless, for the uég'ofthe chi-test for the fit of the curve. It is
presumed to Pe obtained from previous experience with the
measuring imstyuinent. By the time enough dats are gathered
to attain add test for randomness, ¢ will be known closely
enough?{ :

%;fé.’also that if s denotes the standard deviation of the »
mgagurements, then x? = ns®/e?, and the minimized value of
I8 ns®. For a new sample of n observations there will be a
(" hew mean, %, a new line, and 2 new x*. Any one value of T can
\\: “ form a basis for action only if there is evidence that future
values of T would be elosely the same. This evidence rmust

come from experience with the procedure of measurement.

10. The same problem with unequal weights. () Direct solu-
tion. In the preceding section, all the observations had equal
weight,? they were “ drawn from the same bowl 7 (Ch. I). Sup-
pose now that the n observations zi, g, - - +, T have weights ws,

2 The meaning of weight will be learned in the next section.
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Wz, ***, Wn, perhaps not all equal. The observations are now
drawn from bowls having the same mean, but perhaps various
standard deviations. The procedure is formally very similar to
what it was before. We are now to make the sum of the wetghied
squares of the residuals a minimum, so we write

S =X wilz; - a)? (8)

the sth residual being, as before, z; — a. Here, the weight'zg;,is
introduced because the weights are not all ynity. As before,“S
is to be a minimum with respect to . The derivative A

s '\ N

Tn = T2Xwilei - a) \\
when set equal to zero gives O
A
Zwwi—a)=0 (&
or ::t v’
a X w; = J {9)
whence N
SN Twr;
o= =
N > w00 z (10)
where ¥ is now the we;'ghbd mean of the n observations. In the
event that wy = wy %\ = 1y, this result reduces to the previous

value of @ in Eq. 7 In other words, the problem of the preceding
section (equal .mgfits) was a apecial case of this one,
The minimized value of S is here

s @;M -7 = Twaz?® — 2 ¥ w; (Seep. 151.) (11)

(B)+ f’abular solution. In Section 61 we shall see a systematic
pracedure for the solution of normal equations and for ealeulating
\hé "¢ reciprocal matrix,” in which are found the variance and
product variance? coefficients; also we shall see the minimized
value of S caleulated right along with the solution of the normal
equations. In simple problems Like the one just considered, there
is only one normal equation (Eq. 9) and it is of course very easily

3 Following Aitken,. the term product variance is used here rather than
covariance.
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solved (sec Eq. 10). Nevertheless, it is interesting to see how the
routine process that is to be shown in Section 61 applies here.
Let us therefore set up the following tabulation, and perform the
steps indicated below. The subscript ¢ in the summations has
been omitted for the sake of brevity.

Row a = 1 c Q
2w 3wz 1 ¢ \‘\
2 Y we o O
3 (3 wx)? N ‘
ol P .“‘.\\. ]
. N
I1 T — 53 )
e -

An ellipsis (-« -) in the tabular a,rra,yﬂ‘ér})t-es a gpace wherein &
number would ordinarily be entered i numerical caleulation, but
in which it is not worth while to shog the entry in symbols.

Row I is the main equatigh}® it is equivalent to Eq. 9. Each
letter across the heading,of ‘he tabulation is to be multiplied by
the coefficient standing{below it in Row I. Row 2 containg the
sum of the weightedtsgiares of the # values, measured from zero.
The € column isfilled in as shown. Row 3 comes by multiplying
Row 1 through™by —% we/Xw. Row Il comes by adding
Rows 2 and@y” In the “ 1" column of Row II is found the guan-
tity \'\“ '

n. 3 2
’..‘s'\\ S:szz—%ui? or Tux? —FLw

AN

\m \#¢ already derived in Eq. 11. 8 is here seen as the initial sum of
weighted squares, 3, wz? in Row 2, reduced by the amount
(3 we)?/X w to take account of the faet that the residuals are
finally measured from the fitted line © = a, instead of from 0.
1t is interesting to perceive that this minimized value of S has
come forth without the intermediate step of computing each residual
after adjustment, then squaring it, and then adding them all
together, Similar short cuts, due to Gauss, will be found also in
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the more complex problem, as will be seen later. (See Secs. 29,
59, and 61; also compare with Sec. 15d.)
Row I solved for a gives
> wx

Tw
in agreement with Eq. 10. However, if we use the € column in
place of the “ 17 eolumn in solving for a, we get 1/X w. Infer-
preted, this means that N,

aq =

'\
..1_ — ._1_ O 12
Wa a Z w ..(”:" ( )
This solution can be looked upon as the one and o-nly term in the
reviprocal matrix (to be encountered later mN\extended form:
Sec. 61), This ono term is the variance cogﬁi‘elent of a, whlch
m’serpreted means that \ g
2 _ .‘1 v
= B.E.of a)? = 0 ~Fw
The standard error of a thus decreawb as the weights of the indi-
vidual observations incrcase, ‘T.h.lb equation will be understood
better after the discussion on, welghts has been read (next section).
11. A digression to deﬁﬁe weights. By definition, the weegki wy
of the funetion f is infyérase ly proportional to the variance a7 of f.
That is to say, 1 /w,oB{the variance coefficient of f.  In symbols,

(12)

K% e

‘\“\ wy = ';P or o = 1;; (13)
o® is si X?y)é, proportionality factor, and is evidently the variance
of a functwn of unet weight. If o2 be arbitrarily doubled, and w;
alsg-doubled, ¢/ is unaffected in value.

“¥or example, let f be 7, the mean of the # observations =,
&3, **+, Ty, which are random variates taken from a universe of
standard deviation ¢, hence esch of undt weight. Then, since the
variance of # is ¢2/n, substitution of Z for f in Wq. 13 gives

a—2=n ar o3 =§ (14)
‘n

%

Q!
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whence we see that n is the weight of Z, and 1/n its variance
coefficient. O, if the n original observations were each of weight
w instead of unity (as we could as well say, since weights are
relative and not absolute, depending as they do on the arbitrary
factor o7}, then the varjance of single observations would be o fw,
and the variance of Z would be one nth as much. In this case,

therefore, Eq. 13 gives : \
2 0,2 N
o P 2§
wy = _crE =mw or oF = o x \AL5)
W

saying that nw is now the weight, and 1/nw the vgyr’i&ﬁce coefficient,
of Z. So, as before, the weight of % is just n {ithes the weight of a
single observation. RN

« The primal conception of a weight i ihat of a repeated obser-
vation.”* In Fisher’s terminology, $Hemean T of n observations
contains n times as much énformation s 2 single observation.

Concerning two functions f1_and'fz, it can be said at once from
Eq. 13 that SN

Wi " ?,4'52 = 0'22 H (}'12 (16)

which says that thgiw:eights of two functions are inversely pro-
portional to their\(ari‘ances.

Exercise 1. . 1)V, denotes the residual at point i, w; the weight
of the obsepvafibn, then x* = (1/¢%) 2wV 2. Show that this may
be writteh”

O\ 7 \2

A sy (L

o o) AW
N/ which says that x? is the sum of the squares of the residuals, each
residual (V;) being measured in units of the standard error o /AW
of the corresponding observation {compare with Eq. 20, next sec-
tion). In other words, %2 18 the sum of the squares of the stand-
ardized vesiduals. x° is therefore independent of the units used in

1R, B. Wilson and Ruth R. Puffer,  Least squares and laws of population
growth,” Proc. Amer. Acad. Aris and Sei. (Boston), vol. 68, August 1933,
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measurement; a change from feet to inches or centimeters, or
from pounds to ounces or grams, changes the residuals, but not
the standardized residuals, nor x?,

Ezercise 2. When both = and y observations are subject to
error, one may wish to designate the summation explicitly as

1
X = -2 (o V2 + wyVy) .\:\
6\
as has already been indicated in Section 8. Show that this, mdy be
written O
2 2 A
= | AN
G + a 4
\/w:c '\/wxy b

which again says that x® is the sum of the '@u&res of all the resid-
uals, each one being measured in units &the standard error of the
corresponding observation on the gef y coordinate. So 2 is,
as before, the sum of the squarésiof the standardized residuals.
The remarks in the preceding éxercise still hold.

Lizercise 8. 8, or the sy 'of the weighted squares of the resid-
uals, like x?, ig also inva,:rj“ia}lt to changes in units (as from pounds
to ounecs, ete.). But'Sis dependent on the arbitrary choice of 7,
whercas x? is not, ( One woight in the whole sct is arbitrary, and
the others are veluted to it through Eq. 13: fixing this one weight
is equivalent/o-fixing o. S can be doubled by doubling all the
weights, bdt)this has no effect on x? because «° would also be
doublod{ \The least squares solution for @ (and other parameters,
if any! gf,‘s In more complicated problems) is independent of ¢2; the
pothnleter or parameters that minimize S for one set of weights
will also minimize it if all the weights are doubled.

For another interpretation of 8 in curve fitting, see Exercise 8 of

Section 58, pagel45, where 8 is seen to be equal to the sum of WFy'Z.
Other exereises dealing with weights occur at the end of Chapter ITI.

12. A more complicated problem — several samples. (a) All
observations have the same precision. Let us suppose that »n obser-
vations of equal weight {equal precision), and all on the same
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unknown, as for example those of Section 9, are arbitrarily syb-

divided into m samples of a4, ny, - - - , Nm Observations. We shall
say that
X, is the mean of n, single ohservations.
X, u 11 I 1] n It i
2 2 ~
O\
7NN “

1 11 Ny
X L 14 i i i %
" “\m . X

Now if single observations have unit weight, thé,\ﬁ it ‘will follow
from Fqs. 14 or 15 that the weights of the m megus are

w1=n1,w2=ng,--',w"\=, Tt
We may now consider the m sample me &30 be m observations of

weights respectively ny, « - -, n,,, to which ‘the results of Section 10
apply. The valuc of ¢ that minimizes’ x? is then

¥ = 20X X Xs -+ n,%,,

which follows from Eq. W\ This value of X is the weighted mean of
the m samples. Aciguﬁ:l:[}r, it is also the mean of the entire group
of my + ng + - - . K, single observations, since they are all of
the same weight\ (unity). Our result implies that when the
residuals (T@)’Q&iré reckoned from this value of X, the sum S or

T wh?is minimum, By Eq. 11, page 19, its value is
A0S = En(®i - XY = T X2 - ax?
Adehematic representation of the observations, residuals, and
ereors, and their relationships to the weighted mean, is shown in
Exercise 1. Show that when the residuals (V;) are measured
from the value of X shown in Eq. 17, the weighted sum of the
residuals is zero.  That is, 3wV = 0.

It i8 not to be inferrod that 2" wV = 0 in all least squares adjust-
ments; sce Remark 4 on page 152,

Ezxercise 2. The value of X is independent of the mode of
dividing up the » obsorvations, that ig, the subgroups of ny, 7o,

(7
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-+, and n,, ohgervations can be formed from the n observations
in any manner whatever,

Bow
E - X
|— | Ny
Er—e ®1
% N
X5
o UK 2
ng ' 2\
S vy NS ©
€5 W
"\
"(3 Q)
ny K¥s.
i -—Vajsa "’.\\‘
i s v

Fia. 6. Three series of observations on a m*a.gnit,uﬂ}“j;
7y observations have mean X and sta‘nd‘ard devmtwn &
na it 13 “« oy, .“n N it 51
7y i“ & & X? N e o« o
X 18 the weighted mean of the three serles The errors and residuals in the
individual means Xy, Xo X3 are derloted by EI, By, Ezand V3, Vs, V3 respec-
tively, The error in the nghted, nean X is denoted by E. As the figure
happens to be drawn, F, B, &%, Vi, and V3 are positive, and Ky and ¥y are
negative, as the arrows i{ldlfeate. This case of curve fitting is intermediate
between the simplest Krf{blein shown on page 16 and more difficult ones de-
seribed in Chapter VIIL
Ezercise 3. Grr‘the contrary, the value of S does depend on how
the n ObSEI'V&‘blGnS are subdivided, and similarly for x2.  (Note:

x? is just. «S‘hwmded by o2.)

(b}(%he precisions of the single observations differ from one
sam‘pﬁe {o another. Suppose that

\”\3 ~" X is the mean of ny observations from & population of

standard deviation o;.  'Then the variance of X; will
be s 1 2/ 71

X, is the mean of 7., observations from & population of
standard deviatior ¢,,. Then the variance of X, is

O'mg/ nm- r,
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o1, 03, - - + Op, Need not all be equal. For the weights of X, Xa,
ete., we may take :

0'2 ??,10‘2
wy = —5 = — for the weight of X
a1 g1
iy
2 2
LA oo™ « 0 “ox
i oy” - o5° 2 O\
ny . DOas
. (‘x’s
. ,\{ )
2 o2 v’
i o 1] 13 113 113
Wy = —3 = 3 z \/ Xm
Ty O ¢
m \\/

o2 ig arbitrary, because the weig};féka?e purely relative. Again,
as in Sections 9 and 10, the problem is to fit the curve

N

W\ P=a 4)

Q
The answer is a]ready.cbf;}tained in Eqg. 10 on p. 19, which applied
to the present problem gives

,“ n1 X1 ﬂzxﬁ B dm
P AR,
G:'%:‘Ew = " ” - = X ) (19)
A\ o, P2 4 e
,”\\ o o1 + P + + g

™

\Ebhe quantity X just defined is the weﬁ'gkied mean of the m sam-
Nples. Residuals (V) reckoned from it make 8 or 2 w: (X — Xy’
a minimum. ' o o

The problem of part (b) reduces fo that of part (z) if oy =
@z = -+ = Gm. 1t is interesting to see that o does not appear
in the fraction of Eq. 19, ie., X isindependent of v. If o* were
doubled, all weights would be doubled, but X would be un-
altered, Likewise x? in. Eq. 20 would be unaltered. (See the
exercises in Bec. 11.)
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Ezercise 4. Show that when the residuals are measured from X
as defined in Eq. 19,

TuwV=0

as was true also in part (a) of this section. (See Exercise Lp.24)
Note that x* can be written N\

R (Dis?repancy between X; and X)*? & \%2\0)
Variance of X; about true mean _

See Iixercise 1 of Section 11, page 22. O\ 3
13. The estimates of ¢, internal and external,Bécause of the
distribution® of x* when the sctual sampling Xthe experimental
work) is deseribed by the mathematical model here assumed,
namely, normally distributed observationg,” the mean value of
x” in the long run is equal to &, the numbier’of independent residuals
or “degrees of freedom.”® In any ore experiment, x2 may be
larger or smaller than the averagef.f: “For the problems of parts ()
and (b), the number is m — 1~becbfuse there is one relation (Eqs. 17
or 19) betwoen the m residusia dnd X. The unbiased” estimate of
o? mado by external consistency® is found by caleulating what value
of ¢ forees x® to take ifSythean value k. In other words, the esti-

S Karl Pearson, P,’u'EN}ag‘, vol. 50, 1900: pp. 157-175. A paper dealing
more specifically with.etivve fitting of the kind here considered will be found in
the J. Amer. SlaiSdssoc., vol. 29, 1934: pp. 872-382; see also Phil. Mag.,
vol. 19, 1935 yspp’ 380402

% The coftebtion for the number of unknowns evalusted {one in this case)
and the }ui'wﬂent of setting the mean value of x* equal to & divided by the
numbe’l:‘§ observed quantities diminished by the number of unknowns evelu-
atedswore set forth by Gauss in his Theoria Combinationis Observationum
“Brroribus Minimis Obnoriae, Pars posterior (Géttingen, 1823; wvol. 4 of his

\Werke), Art. 38. This correction is sometimes eredited to Bessel, but the
reference just given, which was kindly furnished by Dr. G. J. Lidstone, places
the originality with Gauss.

" Unbissed in the scnse that its mean value is o2,

® The terms external and internal consistency werg introduced by Birge
(Phys. Rev., vol. 40, 1932: pp. 207227}, The comparison of the two estimates
{Sec. 13) is an application of the * analysis of variance,” the essential features
of which have long been recognized by physical scientists; see, for example,
A. de Forest Palmer, Theory of Measurements {(MeGraw-Hill, 1912) pp. 66-71.
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mated ¢ satisfies Eq. 3, page 15, whence comes the estimate
S
o (ext) = E (21)

From this equation, for the problem of Section 12b, we get
Twl? 1
k m—1

n° \
o (exl) = T X — X)? (22)
ay AN

This cstimate is made from the external consistency of the)data,
i.e., from the fit of the “ curve ” X = ¢«. What we dg n making
the estimate o(ext) is to say arbitrarily that x”does equal %.
This is equivalent {o saying that P(x) is about 355 not exactly §
beeause of the skewness of the x* distributi{n, which, however,
gradually disappears with increasing k. /)"

If we are not positive that all m sample’s‘\:ame from populations
having coincident means, we should h;wé as an alternate hypothesis
that the m population means p;, g8 * -, #m are not all identical.
Now if one or more of them reé]}y are not equal to the others,
o*(ext) is raised, on the averfiige, to some value higher than o*;
consequently in examiningfhe hypothesis that py = po = -+ - =
we should be interestcgi{m\knﬂwing if o2 (ext) is significantly greater
than o2, or, what _is<thé same thing, if x” is significantly higher
than k. This can he ascertained by looking up FP(x) in tables of
chi-square. ij(soﬁrse, x? ean not be computed or compared with
k unless ¢ igknown. Or, to use Fisher’s table of z, one would set

O g
N ¢ =31 20 @3)

[

*

a\nd Took up P(2) with Fisher's ny as m — 1, and with ng equal to
\iafinity, since o is here assumed known. In regard to the inter-
pretation of P(2), see the small type in the next section. Tables
and examples in the use of P(x) and P(z) will be found in Fisher's
Statisiical Methods for Research Workers (Oliver and Boyd); also
in several other texts.
Now the

?1,'0’2

Wi of X =wy = Z— (24)
iy

+
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and the
2
td S.E. 2 0 {ext) _ 1 2
(Est’d 8.E. of X),.s Pl e v ¥ wV
1
" g &%

There is also the estimate of o made from the internal ms@@cﬁ‘a
of the data, i.e., from the consistency of the observationstawithin

samples. Thigis!® N
2 2 (s,
2. 181" + Noly +---+nmsm{’\
t) = “
7o) n1tng et N N (26)
whence the , \\
0'2'(3'}&
(Est’d 8.E. of X)gn2 = (27)
N STWx

wherein wy has the value given: 1’1:1"’E.Jq. 24. 34, 82, ' -, 8y, are the

standard deviations of the 7 samples.

The cstimate by intgxﬁal consisteney iz possible only if there
are points in which tHere is more thar one observation. When
there is but one o&se}vation at each point, the estimate of o by
internal consistehey is not a possibility,

14. Comparisen’ of the two estimates — analysis of variance.
As was menfioned in the preceding section, the estimate o (ext) is
valid only'if’the m populations have coincident means; if any two
of the theans uy, pa, « + +, un are unequal, o2 (ezt) is, on the average,
raisedbabove 0. But, in contrast, the estimate o (énf) is unaffected
b iriequalities among the means of the populations; so long as ¢

}smajﬁs the constant standard deviation of all of them, the average
value of e®(int) is still ¢, It follows that a statistical test of the
bypothesis 4y = gp = - -+ = g, is to examine the ratio of the two

? See the reference to Birge on page 27.

10 8ee, for example, Eq. 67 in Deming and Birge's Siatistical Theory of
Errors (The Graduate Scheol, The Department of Agrieulture, Washington,
1934, 1938), p. 168.
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estimates. To do this, we may follow Fisher and take

2 (ext)
2 0 E )

z = (28)

and look in his tables to see if z is “ significantly ” diffcrent from 0.
{In doing this, we use m — 1for Fisher’s ny, and nq + ng + + -+ 5 Q)
N, — m for his ne.) If 2 is found to be go large that it lies hey and
the 1 percent limit, we say there is “ statistical evidence 2 {fHat
the data are not homogeneous, or that not all the u; a{'b‘“(‘qllal

in other words, that the curve \

Xi=a ) (29}
is not a good fit. D

Remark. Such a eslenlation of © signifidartée ” takes account
only of the numerical data of this one ¢xperiment. An cstimate
of ¢ is not to he regarded as & numberthat can be used in place
of o unless the observations hax@-démonstrated randomness
{Ch. I}, and not unless the nuulber of degrees of freedom (the
denominator in Egs. 21 or 26) amounts to 15 or 20, and pref-
crably more. A broad background of expenence is necessary
before one can say whéther his experiment is carried out by
demonstrably randorfi methods. Moreover, even in the state
of randomnesg, it ﬁx@t be borne in mind that unless the number
of degrees of frgedom i very large, a new experiment will give
now values, aff Poth o(ext) and a(mt) also of P(x) and F(z}.
Ordinarily( thére will be  scries of experiments, and a cor-
respondin ]%*scnes of P values. It is the econsistency of the P
valied\of the series, under 2 wide variety of conditions, and not
the Bmiallness of any one P value by itself that determines a
,bams for metion, particularly when we are dealing with & cause

m: “systern underlying a scientific law (Ch. I}, In the absence of a
\ } " large number of experiments, related knowledge of the subject
and scientific judgment must be rclied on to a great extent in
framing a course of action. Statistical “ significance” by

itself is not a rational basis for action.

15. Another simple problem — the slope of a line that is known
to pass through the origin. (a) The y coordinaies subject {0 error;
x free of errar. The equation to be fitted to the points in Fig. 7 is

y = ba (30) -



o &

™ " Here, X ros = 0, ag the student should prove.

N\
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Let y; denote the observed ordinate at the sth point; then g; — ba;
is the residual at that point. Itisa vertical, or y residual, because

the error is all in g, by assumption.

then the sum

¥
S =X wly; — b2)® (31) .
. . Q)
is to be minimized. Wa differ-
entiate this with respect to b O\
and obtain e\
s
T =22 w(ys—bas)  (32) e \Pall
Set equal to zero, this gives X ’
bl wr? = Lwry (33) | PN ]
whence Frajph ) A line known to pass through
- > wry 24 the\origin. The slope iz to be esti-
= T wx? (34) ~amated from the observed points.

If w; denotes the weight of ;,

The subsecripts are omitted for’ Bonvenience. w means the weight

of & y observation, as before:

Noto that hers,

that 2o w-z- ré%s

statements. (Cf .

pgi’cherz res not 2, w- ves is necessarily zero, but
0. The student should demonstrate these
emark 4, p. 182, for an extension of this note.)

Spectdi oase; 1. Buppose that the weight of y is inversely
propoptional to x; i.e., the square of the standard error of y is

propoi"&ional to z.

O
N b

N\

Then Eq. 34 gives

Xy
T

(35}

The result obtained in Eq. 35 has application in many prob-

lems in the social seiences. Sample surveys of (e.g.) vacancy are
often taken in & city or metropolitan district, by picking out
certain blocks, or segments of blocks, and noting at every
dwelling unit therein {or sometimes at every kth dwelling unit}
whether that dwelling unit is vacant or occupied. If in Block ¢,
or Segment 1, it is found that there are &; dwelling units, of
which y; are vacant, then when the survey is completed, the
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estimated vacancy rate (fraction vacant) for the entire city
may be taken as
¥

D
Total number of vacant dwelling units in the sample
Total number of dwelling units in the sample

(35")

This estimate will be close enough for purposes of action, if the

sample is not too small. Often a 5 or 10 percent sample of all N

the dwelling units in & city or metropolitan district is suffigiens, *

The justification for using Eq. 35 to obtain an estimaté.of the
vacancy Tate lies in the observation that, except heh the
vacaney rate is inordinately bigh, the vacant dwel ing units are
wsually scattered throughout the city at randomy }{This obser-
vation was first made by Messrs. J. Stevens\Stock and Les-
ter R. Frankel of Washington, in their sample surveys of rent
and housing. }** M

Another application of Eg. 33 is t¢¢he hatchability of eggs:
the more eggs set, the more hatch g, (agdept for random scattered
infertility), but also the greatgsthie error in y, in absolute
numbers, N

Fq. 35 is used in Examplg TV at the end of the hook, for &
sample inventary of cannedigoods.

#i. Suppose that :all;\ihe y weights are equal; ie., all y obser-
vations have the\s@ne standard error. Then Eq. 34 gives

_
- 2162 (36)

<
This ig jpbrhaps a more usual case than the preceding one, par-
t _u}a’iﬂy n engineering, physics, and chemistry.

~,*'\1ii. Suppose that the weight of an observation on y is inversely

Uproportional to z%. By putting w = 1/2%, we find from Eq. 34

that
¥
T

L@ ¥
b = _ = — = = = T
31 'nz . averagex (37)
The letter # here stands for the number of points. Each ob-
served point gives an observed slope y/%, and the least squares
estimate obfained from all the points is in this case simply the
average of all n observed slopes.

1 Private communieation to the author.

Q!
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The distinetion between Eqs. 35, 36, and 37 should be noted
carefully. TIn Iiq. 35 & point has more influence on & if it is far
outlying, this influence being closely proportional to the distance
of the point from the origin. In Eq. 36 the influenee of 2 point
1s further accentuated by its distance from the origin. In Eq.37
the advantage of distance is completely removed, the final result
being merely the average slope of the n rays joining the origin
with the observed points,

(b) The tabular solution of b, and s weight, and the.aq;;??z'*\s.
This will be similar to the tabulation in Section 10b (qwvy), We
enter in Row I, from Eq. 33, the coefficient of b undet Band the
right-hand member under the “1.” Enter the weighted sum of
squares of y in Row 2. Fill in the € column with'd and 0 as shown.

s )
Row b = 1 [ < &/
I > wa? > wxy 1 WV
2 Ty ~*  How obtained (cf. Sec. 10b)
a _ 2 wxy)zf N By nultiplying Row I through
E gt by _Z wxy/ E wz?)
II ¥ oyt 4 ‘_,(_2_1_"_:6_3{_}3 »++  (By adding Rows 2 and 3)
\\ 3wt

An cllipsig ‘(\ :) in the tabular array denotes a space wherein a
number #eiild ordinarily be entered in numerical ealeulation, but in
whic{fi“ﬁtié not worth while to show the entry in symbols,

O\ )

Rowysolved with the “ 1’ column gives b as in Eq. 34.

Lg% 1 solved with the € column gives b = 1/% we?, which means
\that
The weight of b = wp = 3 wa? (38)
Row II shows the minimized value of § in the “ 17 column,
which is to say that

(X way)®
S o Tu@-b=Ew’-5 0 @9)

QY
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" Thus § is caleulated in the tabular solution without the. nccessity
of first solving for b and the individual residuals. The initial sum
of squares, T wy® in Row 2, is seen to be reduced by the amount
(X wey)? /3 wa®, the residuals being finally measured from the
fitted Lire, instead of the x axis.

Here the external estimate of ¢ will be found by writing N\
O\
o> (et) = -3 (Ci. Sec. 13.) AN 40)
whence the N\ o)

, . _ 41
(EStu d S.E. of b)ezi (m —_ l)wb (\???: Na 1) E wxz ( )

i
16. The ¢ testfor the slope. In order t6.&pply the Student £ tost
to see if there is statistical evidence that the calculated value of
b is * significantly different from some theoretical value, say B,
we should write o\

N
_ 42
t\“ Bst’d S.E. of b “2)

and make the Stud t test, using Fisher's n equal to our m — 1,
The region of rejogtion in the t distribution is to be chosen with
due regard te &dmissible alternative slopes, which may be greater
or less thsm\B In the denominator of Eq. 42 we may use the
estimate mﬂzde by external consistency, or that made by intcrnal
consigtedcy (Sec. 13). If o(int) were used in place of o(ext) in
Eq.41; then we should have
N

mJ

. 204 2(
V (Bst'd 8., of b)p? = ) _ ¢ ) (43)
. wy, Y wr

This would replace the denominator of Eq. 42, and the number of
degrees of freedom (Fisher's n) would be the total number of
observations diminished by the number .

With regard to the interpretation of statistical tests, see the
remark at the end of Seetion 14, page 30.
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17. The x coordinates subject to error, y free of error. w; wili
now denote the weight of z;. In place of Eq. 31 we now have

A2
8 =2 w (xi—%) 44)

since here the y residuals are zero, and S is made up by sqQuarifgs
the z residuals. By differentiation

ds _
db

O\

bgzu;ya (a:s i’) ; O @s)

Bet equal to zero this gives
rﬁ‘
b2 wry = Ewy , or b=
oy

Note the distinetion hetween Eqs. 34 a,nd46 w in Eq. 46 is the

(46)

weight of z, not y,
For another derivation of EQ 46 see Hint 1 in Exercise 12,
following. R
. Exercises

Bvercise 1. If b i E—f{ 46 be distinguished as b’, prove that
between Eqgs. 34 a,mi\élﬁ there exists the relation

b X way T weay

SO7 VT ZudTud

E. m‘&{@? Find the curve y = br, also ws, from the following
datas®

™S

e
<\; z Yobs Wy
1 0.52 1
2 0.96 1
3 1.50 2
5 2.65 1

¥ alone is subject to error. Use the tabular arrangement on
page 33.
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Exereise 8. Find the curve y = b’z also wpr.

Tobs Y W

1

2 o
' R
O

z alone is subject to error. Again use the tabular an@f@erﬁent,

glhcol—-l-d
ERER
[ i
LB, R |

. but be careful. ~ ¢
&
¥
@
QY
o
\
g\
{}Q
0/2}
&
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THE LEAST SQUARES SOLUTION OF
MORE COMPLICATED PROBLEMS

CHAPTER Il
THE PROPAGATION OF ERROR\?"

18, Small errors in functions of one variable,\\If Jflz) is a fune-
tion of x, the linear term in Taylor's series’ an often be used to
express with sufficient aceuracy the eﬁ’ect\sn J(z) of a small error
in z. Thus, if Az is the error in z, atid Af the resulting error in
f(z), Af and Az may be closely enough related by the equation

Af ;.jffm) Ac )

This is the equation for thé\prepagation of error in a funetion of &
single variable. f’ (xlés}bhe first derivative of f{z), evaluated at
the point z, f(z). Ju\practice, the true value of x is not kmown,
but it is usually sufficient to evaluate f (z) at a near-by point, such
a3 a point whoe coordinates are determined experimentally.
7 @) remaips ednsiant while Az and Af vary.

The B{,O'v.é' equation says that the error in f(z) will be propor-
tional goMhe error in 2. The derivative f’(x) is the factor of
propt)monahty The equation is not exact, L.e., the error in fis
gt _strictly proportional to the error in z, except when f(z) is &

Nlifear function of z. Tt is cloge enough for actual use provided
the error Az is small enough, or when the higher derivatives of
J{z) are small enough. Tortunately, in practice much experimental
work, and most of the functions used, satisfy these requirements.

The relation between the error in f{x), and the approximation
afforded by Eg, 1, is shown in Fig. 8.

1)
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In a linear function, such as
Jfe)y=a+bz (2)
the higher derivatives /' (), '/ (2), ete., are zero absolutely, and
Eq. 1 reduces to
Af = b Az 3)
~which is exact for any error in x, however large. The erron Sn
f{z) will now be exactly proportional to the exror inz, Y
e A\
1(x) \/

N

&

% X

ne
Fra, 8. Showing thg Nﬁtion between the errors in & and f{&), and the ap-
proximation cantaifed in the equation
G- Af = f'(z) Az

Az is the err(i?\'iﬁ:m, Af the error in the function f(z). The approximation in
Eq. 1 is\eégié'by using the tangent to the curve in place of the curve itsclf.
lngsﬁmll errors in functions of several variables, Taylor's
s,exfgeé’ can be extended to obtain expressions for small errors in
<‘f~j1ﬁctions of several variables. Thus, if 7 is a function of x, i %
and if they are in error by the amounts Az, Ay, Az, then F will be
in error by some amount AF, which can be expressed closely

enough as -

AF = F, Az + F, Ay + F, Az (4)

provided the errors Az, Ay, and Az are sraall encugh, or when the
higher derivatives are small cnough. Here F, Fy, F, denote the
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derivatives
aF oF oF
Fo=— p, =2 p 9% 5
z or ¥ ay ¥ z oz (0)

which in practice are to be evaluated at the point 2, y, 2, or ag
near this peint as is experimentally possible.
Eq. 418 the formula for the propagation of error in three variables{
It can be extended to more variables simply by adding more tgrth
& N\

of the same kind. _ K
Eq. 4 is written only through the first powers of Az, Ay,’;a}id
Az, because the rest of the Taylor series (involving the Squares
and higher powers and cross-produets of Az, Ay, and AZ)will be
negligible if Az, Ay, and Az are not tao large, ondf\the higher
derivatives are small enough. In practice, the possible errors
Az, Ay, and Az are limited in magnitude, and Eq: 4 is usually a
good enough approximation for ordinary siftations. In the
event that F is linear in «, y, and 2 (agdd Exercise 2 at the end
of the chapter), there are no terms at @ihexcept the linear terma
(i.e., there are no neglected termg)y and Az, Ay, and Az may
then be ever so large without invabidating Egs. 4, 7, 8, and 6.
(Compare with the explanation\jh the preceding section for a
function of a single variable,farticularly the text accompanying
Eqgs. 2 and 3.) A

P4

20. The propagatiqu.@f}nean Square error or variance.. Fg, 4
leads to a relation hetWeen the mean square errors or the variances
of ¢, y, 2, and F, adrhence also & relation between their standard
errors and theinweights. Tf we square each side of Eq. 4 we get

AR 2:"{:5&3)2 + (Fy 8y)? + (F, Az)? + 2F.F, Az Ay
O T+ 2F.F, Av Az + 2P P, Ay Az -+ -+ (6)

No}x:\'fe'{ﬂ' Az, Ay, and Az take on all possible values® within their
allowable ranges of variation. The derivatives Fzy Fy, Fo, being

*In praciice it may safely be assumed that the ranges of varistion in Az,
Ay, and Az are not large, whercfore the constancy of F,, Fy, F, is ususlly not
a difffeulty. It is moreover presumed that the standard errors oz, oy, and.s,
actually do exist, as they ahways do in practice.  (There are theoretical and
attainable distributions of errors, in which the standard deviation js infinite.
An example is the Canchy distribution ¥ = 1/x(1 4 22), the like of which
must be excented.)
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evaluated at z, ¥, 2, are constants while Ax, Ay, and Az vary.
Then let each term in Eqg. 6 be replaced by its average value; the
result is

U'Fz = (Fzﬂ'z)z -+ (Fya'y)z + (Fsﬂ's)Q
+ 2(FxFyo‘x0‘ysz + Fzed'zﬂ'z?‘zz + FszU'yo'z?yz) (7)
N\

where 7,2 = variance of x, 7., the correlation between Az and Ag,
etc. This formula (alse the simplified form in Eq. 8 wheh it
applies) is called the propagation of mean square errof, Y0r the
propagation of variance. A\

N
The terms in parenthesis are zero if the errors in@yYy, ‘and z are

independent, i.e., uncorrelated. In such a situatto?n\Eq. 7 reduces
to

U'Fz = (Fmﬂx)z + (Fyo'y)z '!‘:i@gﬂ'z)z €))
or, by Eq. 13 of Chapter II, \
1 Fze 3 F" ‘ Fze
L BF | Bfy ®)
W e R QY wy Wy

This equation could be eilled the propagation of weight, if it
needed 5 name. Tt willtbe scen to be of great importence in the
solution of the general problem in least squares. One may refer to
Exercises 11 and 12 gbthe cnd of this chapter; also Eq. 14 of Ch. TV,
p. 55; Remarky (ﬁéec. 28, p. 86; IBg. 8 of Ch. VIII, p. 134; Dxer-

cises 3 and 4 of :Sec‘ 58, on page 145; and Remark 3 in Exercise 4
of Ch. X, p.U81.

21. The §tandard error of a mean. It is interesting to sce that

if F be’ba{kgn as the mean (%) of the n independent observations z;,

Tp, - <% each of standard error o, then Eq. 8 leads to the well-
kpown expression

"\ ¥

)| 2
N\ of = % (Cf. Eq. 14 on p. 21.)

as was taken for granted on page 21. This, however, does not
tell us that if the individusal observations are normally distributed,
the mean Z is also — this fact must be obtained otherwise, Eqs. 7,
8, and 9 are in fact independent of any assumption concerning the
distributions of the errors in «, , 2, and F, provided the standard
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eITOrS oz, ete., actually exist, as was stipulated in the footnote on
page 39.

22. A numerical example of small errors. To see how the
Taylor series operates, we may try it with the particular function

F =424 sinay + z (10),
where the product zy is in radians. Let us evaluate F at the.po\int
{

=2 O
y = 0.95 N

2= 10 Ry

We find N

Fo =4 X 2%+ sin 1.9 + 100~
= 16 + 0.9463 + 1005°26.9463 (11)
Now let @ deerease by the amounts O i‘ y increase by 0.05, and 2
inerease by 0.2. These 1ncremehts may be considered as small
errors, and we wish fo see what efect they have on F. The new
values of z, y, and z are 1.9, v 0, and 10.2, and the new value of F'is
Fy —4&( 1.9%2 4 5in 1.9 + 10,2

\3\25 5863 (12)

The change in .E,;s.
AF,\a’{}’{ — Fp = 25.5863 ~ 26.0463 = —1.3600  (13)

To cofpare this (exact) value of AF with the approximation
&

affordédhby Eq. 4, we first take the derivatives,
Ay F. =8z + yeosay
b Fy = z cos zy (14)
N F,=1

and then evaluate them at the point z = 2, y = 0.95, z = 10,
They turn out to be numerically

F, = 15.6929
F, = —0.6466
F,o=1

(15
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whence by Eq. 4, we calenlate the approximation

AF = —15.6929 X 0.1 — 0.6466 X 0.05 + 1 X 0.2
= —1.4016 (16)

I

This is to be compared with the exact value of AF, computed in
Eq. 13. Other functions, and other values of Az, Ay, Az, would
give different degrees of approximation. In the developmentiof
the general problem in least squares, we shall be mmpgl‘isd to
accept the approximations afforded by Eqs. 4, 7, 8, an@\9. ~ For-
tunately, for purposes of action, the results are, JH:U&H}’ close
enough. o\

AY
ExERcIsEs \%
In the following exercises, mdependence\bf “the observations is
assumed, as in Eq, 8. ..\
Ezercise 1. (@) The mean squz}r'e:ef'ror of the sum or differcnee

of two numbers having equal preeisions is twice the mean square
error of either alone (assumcctmdependent)

{6) The root mean squake error (standard error) of a sum or

difference of two numbexs having equal precisions is 4/2 times
the standard error of-ether alone.

-{e) The root m¢an square error of the sum of # observations
of equal standard error, o, is a4/n.

(d) A survgymg party chains a distance of L feet Show that
the standagd error of the measurement is proportional to /L.

E’m@}e 2 (a) If 4visa lmear functmn of the 1ndependent
vamables z, i, and 2, say :

\ u—aa:+by+cz
\ then the root mean square errors are related by the equation
Gfﬂ.z = ‘3329'32\—]'7 .b2°'y2 + 020'32

A special case is contained in Exerecise 1a.

by If F is a linear function of the = independent variates
Xy, Tay * -+, Ty, of the form -

F=a@i+ azs+ - + ayzn
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and if the varlates z;, x,,

» &n are distributed with variances
oi®, 02% -+, 6%, then F is distributed with variance
ar” = a1 5,® + a2%00® + 45052 -+ an%,2
Exercise 8.

(o) I w = azyz, then
= l(E) () + ()]
* z 7 z .
or )Y
CRCRCRONC
o z

N/
Y z N

which interpreted says that the squares of the perqgiiﬁiée or relative
mean square errors are additive {or the squaresof’the coefficients
of variations are additive) RN
(b} The result of part {a) can be writt \\

0U2:0‘X2+5']’2‘F~0¥2
where U = log u, X =

logy, z, ete,“k belng any base whatever,
Ezercise 4. If u = any/ve, then

() - (ol + )+

The squares of the pgicéﬁtage errors arc again additive
Exereise 8.

I @)= az"y’s", then

RN O RORC)

Here the“percentage errors are increased by the factors o, 8, ¥
(EXG’I‘CISES 3 and 4 are special eases of this.)

N\ E‘xermse 6. TFor the conditions of Exercises 4 and 5 the relations
\)etween the weights are respectively

1 1 1 1 1
wWw,  xhw, + viw, | v, t 2w,
and
l B &2 + 82 + 72
ww, iw, 2

youy, 2w,
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Exercise 7. {a) If A = #r? (4 the area and r the radius, d the
diameter, of a circle), then if an crror Ar be committed in measur-
ing r, or Ad in d, the corresponding error in the area is closely

24
Ad = 2xr Ar = — Ar
r

whence A

AAd A
Ry Ad C
A d O
An error of 1 percent in either the radius or th{(hameter thus
means about 2 percent error in the area. AlsaN
g \/
— =2 —r and A%w, = Lrfly= 1d%w
A 4= 4TS 1@
(This is a special case of Excreise 5 ) .
(b} The measurements on the: Sld.Eb of a rectangle, @ and b, are
subject to the errors Ag and 4h," Show that these errors are re-
lated to the area A by the c‘quatwn

AA _ Ac  AD\ {(The percentage errors

A ¢ X\ are thus additive.)

() The samg,aguiation is satisfied by the area of an ellipse,
and b being tfie 4xes or semi-axes.

02
Eme?'{'s:\& (o) I yis in error by the amount 6y, then In iz in

error by approximately 8y/y, if 8y is not too big.2
(b) If logarithms to the base 10 are used, the error in log ¥ is

. apﬁrrommately 0.434 &y/y.

\V (¢) In particular, let 7 change from 15 to 16, as in Fig. 9. Then
calculate the inerement in log y by the approximate formula just
- derived, and compare it with the exact value of the increment. In

other words, carry out the calculations mentioned in the legend of
Fig. 9.

* The abbreviation I is used here for “ logarithme naturel,” as is common

in Europe, and among chemists everywhere. The abbreviation log will be
used for a logarithm to base 10.
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(d) Let ¥ = Iny; then

2
2 _ %y
oy = —2
¥
and
= 2
Wy = Y wy
gy | ¥ O
:~\'
FaY;
1 AN
L 3 \"/
A
1
K7,
o\
1eoaiz T 16.0 7 \\V
b N
¥ log y = 0.02803 1 \ A yw kO
"N\
] naog.--w%,o TRUE VALUE
Q‘Q > ‘

NS
N\

Frg. 9. Ilustrating the rela.tlon between an error in y and an error
log ¥. Here y changes by umty, and log ¥ changes by 0.02803. The ap-
proximate relation 8§ log y ={¢34 &y/y gives 0.02895, which is to be compared
with the exact value 0. 028 8& Smaller changes (smaller values of sy) show
better agreement, but\}eﬂ for this rather large value of 6y the approximate
relation would be *a\dequate for many purposes, (See Exercise 8¢, p. 44.)

(This result js m?iportant see Ixercise 18 in Ch. X p. 201.)
(e) If Y"-v”log ¥, then
2
. § oy? = ({].4343 %)
,\aﬁﬁ“
~ 1
N _ 043421
“wy y wy

Ezxercise 8. Let u = aéb®, then

= b*u%,° or oy® = bP0?
where

U=Inhu
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Exercise 10. The period of a simple pendulum is T'=2z+/(L/g).
Show that if the length L is too long by one-tenth of a percent, the
clock will lose about 44 seconds per day.

Exereise 11. (&) Prove that if F ig a function of %, and z a func-
tion of §, then
N

F.F, - FF,

We Wy

.Y

LA

7"\
\

where F, denotes dF /dx, and F; denotes dF /dt.
{B) Prove from Eq. 9 that

2™
{

2¥7)

(2
r =\ t
dz N
z £ '.
Varz = (C;T) Var¢ (Var dqnok\es varianece.)
- = dx (0% Senotes the standard error
=T de of z; oy the standard error of £.}

Exercise 12. Prove t]gat when the line
& ; =
\\.. y=>bz
is fitted to pointsyior which « is sublect to error and y free of error
(as in Sec. 1@,}113 turng out that the wmght of b" iz

.\ J

\w Wy = 5;3 2wy = Ty L Wy

5’4

R ~f;" H int I: From Section 15¢, wherein ¥ was subject to error, and
N\ @ free of error, we had

piniey
= g wixyz (Eq. 84, p. 31)

wy = Lowa® (Bo. 38, p. 33)

Now Ioo_k al Fig. 7 on page 31. Viewed from the buck it will
appear like Fig. 10, and the equation of the line will be

1
® =5y {y now free of error)
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From the equations just written for b and its weight, we may
now interchange z and y in the formula for b and write

1 w
= %ﬁ% (Cf. Eq. 46, p. 35.)

wy = 20wy
b!

whence by the result of the preceding exercise, part (5),

" { d 1}2w x\’s..X
tes i — Va “
s O
1 1 N

= i 2 walt = o X way Q-E-Dn\:}
.\'\"‘}
% . ¥
$
N
AV
N
5 »:’ .
:‘/.a &N
* A}:;
2 N\
LN
§ L0y
AN °
)

N Y

£ )
Fra, 10. "(H)is"'ﬁgure illustrates KExercise 12. It is the same as
()" Fig. 7when viewed from the back.

:1\'5»/
{i’ ;‘9: (Due to my eolleagne Morris H. Hansen.) Write
AN > w.yl
A o Cf. Eq. 46, p. 35.
,\~;g~ Waaliyy + Weskalfz + -+ v - WenlnYn ( a- 46, p. 35.)
r‘\: ‘,/_’ .Y Wl
N/ dr; 2 Wil

Now make use of Eq. 8 on page 40 and get
db’™\? ab™\e 1
2 = = 2 2 i T
ou® = 1. (dn) set = L (dx; Wt

e (B wmg)® 1
-wb,=-—=-b!—22—m-—:y£g =552wxxy Q_‘E‘D-

T 2
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Ezercise 13. {a) Recompute the approximation to AF in
Section 22 by using the derivatives F,, Fy, F, evaluated at z 4
Az = 1.9,y + Ay = 1.0, 2 + Az = 10.2, instead of at the initial
values of #, y, 2. (Answer: AF — —1.3184, Note that the
result is very close to that shown by Eq. 16.)

(b} Show that when the derivative in Eq. 1 is ovaluated -af >
z -+ Az, instead of at x, the result for Af differs only in squazes
and higher powers of Az from the value obtained for Af bx evel-
uating the derivative at z. g

(¢) Prove a similar statement for Eq. 4 when the denvatwea are
evaluated at =+ Az, y -+ Ay, 2z + 22. (In pré*ctaep we are
obliged to evaluate the derivatives at the obserg¢tlpoints, not the
adjusted points. Fortunately the dlstmctl&g in the results is
usually negligible.)

\\
Ezxereise 14, If V;is the ¢th re,qldua], from the line in Sec. 15,
page 30, that is, if N
Vz = ¥ '—: i)’.rg
Then, since N\
b = %o, /0,
it follows that o

2\ ‘
Vi =y — (o /o)m
Show that tho ‘{gr}l&nce of Vis
O VarV = Py = 0,21~ 19)
I}’c\e@l\Smce x and y are corrclated, use Eq. 7 and find that

'7:‘; Var V = 0,2 + (—re,/0.) %, + 2{—ray/o.)r0.0,
~O) = 0y*(1 — r%)

N See Eercise 35 on page 177, where ¥ V.2 is given explicitly.
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CHAPTER 1V
THE GENERAL PROBLEM IN LEAST SQUARES

A\
23. Outline of the problem.! As & result of any experim;:fit or
sample survey there will be observations, and when the Adjistment
is completed, to each observed value there will be &~c§3ri“éspnnding
adjusted value. It is useful to introduce the géneept of a true
value, which is merely the average value thapiwould result from
repeating the experiment a large number efytimes in a state of
randomness. In curve fitting, one can vighalize the relation be-
tween the observed, adjusted, and triddoordinates, and it may be
helpful to the reader to turn forward at'this time to Figs. 16 and 17
on pages 132 and 133. oW
In formulating the general problem we shall deal with the quan-
tities listed in the table below"

Observed quantities: :Y\{: Xy ey Xp; Y1, Y¥g o--e, V.
s8J

Their adjusted (m\\ N

caleulated) vilues® =1, @3, -y T ¥y ¥n -4 ¥a
Their weightds) W1,  Wez, 0y Weep Wy, Wyr, ccc, Wyn
Their trgewilues: E, & -4 B o9 omn e

7'\NW

TheYesiduals (obs’d —
* ea' ’d): Ve, Voo - V:m; Vuls Vtr?! ] Vll'ﬂ

£\ In geometrical problems, and other problems not involving
\" parameters, the observations need not be considered as coordi-
nates of observed points,
The assumption will be made here that there is no correlation
betwecen the errors in the observations.  This assumption covers
a wide class of problems, but does fail to cover some.

! The development from here on is an amplifieation of three papers that
appeared in the Phil. Mag. The references are vol. 11, 1831: pp. 146-158;
vol. 17, 1834: pp. 804-829; vol. 19, 1935: pp. 389-402.

49
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The residuals (V) are defined by equations typified by

Var = Xi — o) L ea
Vys' = Yd - ya} (R,En = obs'd cale d) (1)

It is the residuals that are actually calculated first, and in actual
use, these equations are therefore reversed. Once the residufile
are found, the adjusted quantities are calculated by subtra(,tlng
each residual in turn from the corresponding obserx?atlm ac-
cording to Eqs. 6 ahead. \,

24. The conditions. The principle of least sqtmres requires
that the sum of the weighted squares of the I‘Bblckl&]s,

S=2w-y (2)
shall be made a minimum with respect’ &:o'the adjusted values
Tyy T2yt 7y Ty Y1, Y2, 7 4 Yoo But 613638 not a simple problem in

the maximum and minimum of funcj;ions, for here the adjusted
values are related to one anothep™ ‘For example, in the case of
measurements on the three angles of & plane triangle, we required
that z; + 25 + x5 = 180° (d¢e p. 7 ). In curve fitting, the prob-
lem is further complicatédby the fact that the conditions on the
adjusted values (x;) m\(\olve the estimates a, b, ¢ of the unknown
parameters «, 8, -}\\In the problem of Sccuon 10, for instance,
the adjusted valttes of the  coordinates of the n points were all
required to be\equal to &, which was then evaluated as z (Fig. 5)
to make the'sim of the squares of the residuals a minimum.
&t’ake care of the general case we shall suppose that the
adjusted values =, and y; are subject to » eonditions, to be symbol-

izedhas
AN
@ ud F1($1 L9y * Yy Yu abc)=0]
3 H L EI -k 3] y My
\ F2( 14 ) =0 ]
] ¥ equations
for (3)
i . v conditions
Fp( 1] ) =0

% The sign. 3, will denote summation over all observations, z and y both, if
both are observed. .
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The superseript on each F distinguishes that condition from an-
other. Different sorts of problems are characterized by the dif-
ferent kinds of conditions that the adjusted quantities Xy ¥, and
a, b, ¢ arc subjected to. From the theoretical standpoint, the
different problems arc all conveniently handled alike. Thjs\is
possible because there is only one prineiple of least squares, namely,
the minimizing of x2. O\

Eas. 3 will be reforred to as the conditions, or the~gondition
equations. The functions F', F?, ete., on the left,’a}tn.e\the condi-
tion functions. 'They must be so chosen that when»éqﬁ‘émted to zero
they foree the eonditions that are to be imposed on the adjusted
coordinates, angles, lengths, ete. \/

The assumption behind this developmenti$ that the conditions
would all be satisfied exactly by the frdé (unknown) quantities
being measured, and the true pardmgters a, B, v, all of which,
theoretically at least, could be had.tlosely enough by inereasing
the number of experiments. 3%

25. Notation for the derivdtives. The derivatives of the con-
dition functions will be denoted by subscripts, as in Eq. 5 of
Chapter III (p. 39). \Sbeciﬁcally, the notation will be as follows:

L

(N aFt oF™
Fogh = —, Fob=—) ete
O dry A @)
&, eFt ,  OF*
’\: N Ft = T! = -Ej-ﬂ ete,
- a8

.\Dénoting differentiations by subseripts is very convenient in some
A\'work, asitis here. Itisa common practice among mathematicians.
The subscript 0 in Eq. & below does not denote differentiation, but
/. an approximation to the condition function F™.

These derivatives, like the condition functions themselves, are
functions of %1, 2, - - -, ¥n, @, b, ¢. In what follows, we shall need
numerical values of these derivatives, and fortunately, for most
purposes, it will suffice to evaluate them with the observed quan-
tities Xy, Xy, » + +, ¥, and with the best available approximations
@, bo, €o obtainable for the parameters, (cf. Ch. III; in particular,
Exercise 13). In other words, F,;" is to be a number representing
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our hest guess® at the numerical value of this derivative, and
similarly for the other derivatives.
We then write

Foh = Fh(Xls Xa, oy Ya; oo bo, Co) h=12--7 ()
» equations

Fo! is a small number, being just the amount by which the con-{
dition F' = 0 fails to be satisfied by the observed values X,
Xg, + -+, and the approximations aq, g, Co- Similar stat;ar\flén%s
hold for Foz, Fog, ey Fy. s M

Az stated earlier, ao, bg, Co 2T approximate values gff a, b, ¢.
They ean usually be arrived at somehow, as by forcug® three of
the conditions, i.e., solving for the values of @, bpdnte that make
three of the condition functions vamish., This\® the so-called
method of sclected points, concerning whick mtre is said in the
reduced type at the end of Section 55 (p 138) Fach Fq would
be exactly zero except for errors of obsgreation and the conse-
quent impossibility of choosing aq, %o, €0 10 satisfy all the con-
ditions simultaneously. SN

«ay

96. The reduced conditiondts Now let the conditions be made
linear in the residuals VadaWas, * = % Vino A, B, C, by expanding
Egs. 3 by Taylor’s sgx're,s\, retaining only the first powers of the
residuals,? and remefobering that

< Xs" Vi
Y Y — Vi
PO @ A (Cale’d = obs'd — residual) (8)
~ANb=b — B
WY e=c—C

4 ~\' ¢

A A\FTf our best guess is too far wrong, a second adjustment will be required,
But this rarely happens in practice. Bee the quotation from Gauss on page 180.
4 The problem of & straight line with no error at all in one of the coordinates
(Exercises 1 and 7 in Sec. 65) is one in which there are no squares and higher
powers of the residuals to neglect, hence no discrepancies of the kind men-
tioned (cf. Bag. 3 of Ch. IIT). The simple example of the triangle in Chap-
ters T and V is another. On rare cecasions the residuals may be so large that
the neglected terms invalidate thé reduced conditiens (Eqgs. 7), in which event,
in general, no systematic solution is svailable. An cxception i8 the straight

line under certain cireumstances of weighting; see Exercise 6 of Section 85.



[Cr. IV] THE GENERAL PROBLEM IN LEAST SQUARES 53

When this is done, the conditions originally expressed by Egs. 3
take the form

Z inkv:oz’ + Z Fyikvyi + FakA + Fg,kB
z I}

+FPC=F, Rh=12 -5
» equations (7

These are called the reduced conditions. They are eqmvalent\to
Eqgs. 3, except for small diserepancies arising from the neglect of
higher powers of the residuals in the expansion.

27. The method of Lagrange multipliers.” Now,if S‘ is at its
minimum value, and if any or all of the resmuals\then undergo
small variations (expressed by 4), the variaticnGn S will be zero
to within higher powers of the variations in tl{e\remduals in other

words \
168 = X wlVsV = 0, 6Dt equation (8)

The variations typified by §V are 11013 arbltrary, but must always
permit the residuals to satisfy. ;he condition Eqs. 3, or their
equivalent, Egs. 7. So by diffe}-éntiating Egs. 7 we find that

T Fo6V + % m"«svm + FA + FyB
ksC = 0, h=1,2 ... v
v equations (9)

Now multiplx E(i.“g through by —X;, an arbitrary multiplier, to

get \ )

-\tz Fol'Vas + X FytoV ) — MF A — w’b’*aB

—MFMC =0, Rh=12-

,\~. v equ&tlons (10)
“5 This is the method of Lagrange multipliers; see his Méconique analytique
1811), tome 1, p. 74; or Benjamin Williamson, Differential Calcrdus (Long-

mans, 1893}, Chapter 11. The least squares problem without parameters was

worked out by Gauss. He called his multipliers correlaie, not mentioning

Lagrange, Many texts in least squares use the term “ correlates or"‘ coT-

relatives ” in this connexion, but apparently none makes any mention of

Lagrange. 'The reference to Causs is his Supplementum Theoriae Combina-

tionis Observationum Erroribus Minimis Obnoriae (Gotlingen, 1826; Werke,

vol. 4, art. 11.

*
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Add Egs. 8 and 10 and collect coefficients of the variations &:

E (wm'V:c'i - D‘?&inh])avzi + E (wyivy‘i - {RFBFU%'&.])‘SVW:
— PFBA — BB ~ MFHMEC = 0, one cquation  (11)

In Eq. 11 there are two kinds of summations — there is the summa-
tion ¥ running over all observations, and there is also the summa,,
tion over A, in which A runs from 1 to », i.e., over all conditions.
The latter summation will be denoted by the Gauss brackcts\[‘ 2\
Here the number of parameters is taken as 3. If there weley
parameters, there would be 2n 4 p variations. For pra:ctlcc
the student should write out Egs. 8-15 with {e.g.) my= Fand
» = 2 with two parameters. There is no othermvs@y to gain

familiarity with the development.

Eq. 11 contains 2n + 3 variations, 5Vx1,’.§j@2, 6Vaz, =y 8V yn
54, 8B, 5C. Buf on account of Egs. 9, ot{ly 21 + 3 — v of these
variations are arbitrary. Let A, Ag, W& A, be 50 chosen that »
of the coefficients in Eq. 11 vanishy ’chen the cocffigients of the
variations in the remaining 2n 45 3 ~ » terms must also vanish,
because they are used with an equal number of variations, each of

which is arbitrary. Then_alb the coefficients in Eq. 11 vanish,

which means that \

\R Fm"] n cquations; ¢ = 1,2, -+, n (122)

A\X 1
V-;{ 2 F" nequations; £ =1,2, -, n (129
gt
M }‘] =0 one equation (13a)
) \~ S =0 one equation (13D)
\“3 Y FM =0 one equation (13¢)

Each residual (V,; or V) in Kgs. 12 is inversely proportional
to the weight . or @,,; of the corTesponding observation. Does
this seem reazonable? If any observation ig relatively infallible,
having @ = w«, then its residual ig zero; i.e,, there is no corree-
tion. In curve fitting, for example, it sometimes happens that
all the z coordinates are free of error; the corresponding resid-

uals are then 0, and the ealeulated values of x are the same as the
observed.
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The » Lagrange multipliers (A} are no longer arbitrary; they
now have particular values; they have been chosen 30 as to cause
» of the coefficients in Fq. 11 to vanish (vide supra). 'Their values
can be found from Egs. 13 and 15. We shall now derive Eqg. 15.

28, The general normal equations. Now substitute (1/w,;) X
Fe] for Vo, and likewise for y, in the reduced conditions
(Egs. 7). Collect the coefficients of Ay, Ag, - -+, \,, 4, B, C, and <

in so doing set a\
2\
Fxthxlk Fmﬂthzk anthnk ;‘\
Lpg = + + -4 A\ o
Wy Wy wxn“( ~
"+ Py "F o n Fyo" Pyt . +’w
Wyt Wya "Wy
= Ly, .".\\: (14)
R

The following system of equations re§ults. They may be called
the “ general normal equations.”s\For convenience, only the
coefficients arc tabled, the unknowns being written across the top.
On the left of the equality sig.rj,fes’,ch eoefficient is to be multiphed
by the unknown appearing“above it, the plus sign between terms
being understood. On the right, each Fy is multiplied by unity,
hence the heading * K‘Q for that column.

{'T”H_m GENERAL NORMAL EQUATIONS

N

D% nm - a4 B € =1
. .\’\ Ly Loy Ly - Ly Fo' R Fl  Fol
SN Loz Loy Lgy oo L F2 R FE  F?
~\J Lig Las Lss +-+ Ly F& B FP  Fo
\/ . . ) . . . . . 15)
Ly La Lav v Ly FPORY Fr Fy
Fl1 FE2F3 ... FF 0 0 0 (] (13a)
Fil B2 B8 oo B 0 0 0 0 (18b)
F! P2 F® ... F7 0 0 0 0 {13¢c)
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Remark 1. Along the diagonal, A = k, and off the diagonal,
b # k. By comparing Eq. 14 with qs. 8 and 9 of Chapter IT1,
it can be seen that Lyxis the weight of the condition function F7.
In curve fitéing it is in fact sometimes useful to write 1/ in
place of L, as will frequently be done later. {(Cf. also Remark 3
onp.135.) The term Lg; off the diagonal is the reciprocal of the
product varianee of the two condition functions F?» and F*. It
will thus be observed that the diagonal in the general normal
equations is made up of the variances of the condition funetions, .
every term of which is positive, and that the terms off the\.)
diagona! are product variances, which can scmetimes{he
negative. : A~

Remark 8. Since Lyy = Ly, 8s is indicated by Egqu\4, the
coelficients of the unknowns in Tgs. 15 are symmetrieal about
the diagonal. Because of this symmetry, it will‘be possible, fol-
lowing Gauss, Doolittle, and others, to shortezi\the numerical
computation for finding the unknowns (Se,cs\\Bél and 61}. In
the abbreviated solution, it is not necessafy'to enter the coeffi-
cients below the diagonal (see Bec. 300N,

The general normal equations arey < 3 in number, and can be
solved for the » + 3 unknowns, written across the top. Special
methods of solution will be taken up in Sections 34 and 61, but for
the present we shall only nete that once the residuals 4, B, and €
are found, the final (adjisted) values of the parameters are ob-
tained by subtractini(ﬂzé residuals from the approximate values,
ag shown in gs. G :

The solution, ¢Pthe general normal equations yields also numeri-
cal values for {h,e Lagrange multipliers Ay, Ng, - - -, \,, which through
Egg. 12 enable the residuals (V) to be calculated. The observa-
tions XMd Y; are then adjusted by subtracting the residuals,
agaimaceording to Fgs. 6.  The adjusted quantitics z;, along with
Ahe adjusted parameters found by Eqs. 8, will satisfy the » condi-
\tions expressed by Eqs. 3 (p. 50), or their equivalent, the reduced
conditions, Eqs. 7 (p. 53).

Ezxercise. Apply Taylor’s series to any one of Egs. 3 to derive
the eorresponding reduced condition shown as Eqg. 7.

29. Short expression for S. The normal equations are really
normal. The matrix of the coefficients is positive definite. By
definition, S = ¥ wres®. Now by substituting for the residuals

QY
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in terms of Eqs. 12z and 12y, we find that

1 1
8S=73 a [MFmﬁF =+ yZ 4:3; [Kthgh 2

=T

1
= — AFarl + MoFua? + - - - L NF)R
Wy

1
o M P LR O
-
o+ — (7\1Fim + NP + - + N Fyn %

Wyn

Lin® 4+ Logns® + - -« + L,)2 ~~g\"
+ 2(L12)\1)\2 —+ the other cross-pll)fluct terms)

Another way of writing this is to border t}\ followmg symmetrieal

array. NS
Ay Az Ag EEEPR Y A B ¢
Ay | Lz Loy L ::;'*f“ ' L Pl Fyl FA
A lnr Loe Ly % Ly F R R2
ha | Lns Lo L:’:? v .. L Pl ¥ BB

. , {:‘;\ . . . - a8)
Ay le L‘ZK LSn e Lw Fav Fb' Fc,
A | PN QF2 F2 ... By 0 0 0
BIFRXNF: B .« B 0 0 0
CLEST R FEP . B0 0 0

CERF M+ M M = D
by‘«Eqs 15, page 55. We have thus discovered that
QO 8 = DFo 7

In this way, 8, the minimized sum of the weighted squares
of the residuals, is expressible in terms of the Lagrange multipliers;
wherefore, so far as S is concerned, it is not necessary to compute
the residuals and square them. Later, we shall see that S can be
computed by a systematic proecedure without even finding the
Lagrange multipliers (Secs. 34 and 61). It'is a fact that in some
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problems it is nevertheless advisable to compute the residuals, so
that they can be examined individually (cf. Sec. 78).

Gauss derived Eq. 17 for the case of geometric conditions, for
which parameters are abgent. For other special expressions of S,
useful in curve fitting, when parameters are present, see the exer-
cise following this section; also Exercise 3, page 163.

Since S > 0, the quadratic form (16) is pomtwe definite?; that
is, no matter what values be given t0 Ay, Aa, = 5, Ay, 4, BLG, the
quadratic form (16) can not be negative. The symmétry of the
general normal equations (Sec. 28) has already been, notbd henee
these equations are really normal —i.e., they are) ot only sym-
metric, but the quadratic form of the coe@ﬁq\ents is positive
definite. ’

Ezereise. Show that o\

Ly Ler Lyt v+ v Ly \E 1 R Rl Fo
Lna Loz Las -- Lyz F2 F? F2 Fy°
Ihg Lgz Lag "',.'Lva F? F? P} Fo

Ly, LeeLs, -+ L, FS Fy F?

a FDF

Fal\' w2 PR FF 0 0 0 0

F"al’ F2 F2---Fy O o 0 0

Q.;ng F2 F2...F7 O o G Q0

. \ Pot Fe® F? - F "0 0 0 0

&2 ' '
A\“ - | Lu Loy Lay -+ Ly Fg' Fy' F/
N Lig Loy Lss - Ly F2 F° FZ?

\ L13' .L23. L33."-"‘.' L‘_’a, F&.S Fﬁa 'F.’:'3

Ly, Ly, L3§ e Lﬁr s Fy FS
Fl F2 F2 ... F2. 0 0 0 -
Fbl Fb2 Fbs e Fby 0 0 0.
Fl F2 FE--«F7 0 0 0O
§ Maxime Bécher, Higher Algebra (Macmlllan 1907), ]Jage 150
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CHAPTER V Ke

S
™

GEOMETRIC CONDITIONS .8

o0

30. Adaptation of the general solution to co'iﬁitions without
parameters. When the conditions imposed by ¥gs. 3 or 7 (pp. 50
and 53) of the last chapter are geometric, t’h}r’e are no parameters
or adjustable eonstants. The quantities}a: b, and ¢ then do not
cxist, and in the general normal equ&tilqnlé {p. 55}, all the rows and
eolumns containing 4, B, €, Fa’i,jﬁ'bh, and F.* are to be deleted.
The Lagrange multipliers () @Iﬁ’iﬁe only unknowns left, and only
the square array of L coefficients remains. The general solution

thus reduces to Eqs. 1 shewn below.
N\

S

A Q{\’x) As e N o= 1
L ANz Ly s Ly, Fol
o I Lo o Ly, Fy?
o Ly Ls, Fe? (1
IN” . .
N\
O . .
Lw FIJ’

NS
...\; *" Here the coeflicients below the diagonal have been omitted, since in
\ the abridged solution soon to be learned, those below the diagonal
arenotused. The coefficients are to be read * down to the diagonal,

then to the right.” The unknowns are the » Lagrange multipliers.

This type of problem (no parameters) was solved by Gauss,®

and is treated satisfactorily in many textbooks. It arises in

! See the reference to Gauss in Section 27, page 53.
59
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geodesy, surveying, and in astronomy, and this accounts for the
attentions of Gauss, Bessel, and Encke, who were mainly interested
in the problems of adjustment arising in astronomy.

31. Example: the plane triangle. We shall return now to the
triangle problem discussed in Section 3 (see Fig. 3, p. 7). The
angles are measured with a transit. The weights might arise.ftom

the number of repetitions on each angle. A
RS
Obgervations: X, Xg, X3 O
Weights: Wy, Wa, W3 N\

Cale’'d values: =z, x2, ®3 (to be, fduﬁd)
Here there is only the one condition, namelg ’
z1 + %o + 23 = 180° (This correbpoqu to Eq. 3, p. 50.) (2)
50 We write
F(21, 29, 73) = ,x;fﬂi’xz 475 — 180° 3)

(There is only the one coujdiﬁibn, 50 no superscript on the F is
needed.) This conditiopfunction F will be zero when we are able
to insert the admste@%ulues Ty, Tz, T3 into it. By inserting the
observed valuca we\‘&aiculate

Fy = X1"+ Xo+ X3 — 180° (8ec Eq. 5, p. 52.) 4)

Fo is not zqro unleus X1+ Xy + X3 happens to be exactly 180°%
in which- vase no question of adjustment arises. The derivatives
of F &

Py=Fy=Fy;=1 (See Eq.4,p. 51l) ()

\ ~( Thcre is only one L coefficient (why?). It could be called L
but no subscript is needed, so we shall use simply L. It is cal-
culated as follows:

WEy - FoFy  FaFy 1 1 i
L = = - —_ — .58y (B
o -+ - + v +w2+w3 (Eq. 14, p. 55) (6)

"There is but ore normal equation, namely,

In=F, (M



iCm. V) GEOMETRIC CONDITIONS 61

The solution is
Fo

A= (8)

The numerator, Fy, is the amount hy which the obscrved angles
fail to close. The denomirator, L, is 1/wy + 1/ws 4 1/ws, which >
happens to be equal to 1/ by Eq. 9 on page 40 (propagatwﬁ of
mean square error).

After \ is worked out numerically, we may find the three'rebld-

uals by Eq. 12, page 54: N
. @

1 A N

Vl = """RF] = v
¥ RN
1 A A

Vo= =aFy = o~ 9
We e
1 .

Vs = — Afgi= —
W3 oy W2

The adjusted angles are then ™
N\

B K-k =X~ Va m= X Vs (10)
The sum of tl}’(.a'?fijusted angles is identically 180°, for
Ty +xz+x$::{f—7;‘\-’(‘1 +Xo+ Xz — (V1 + Vo + Va)
,\\"\' =Xi+ Xo+ X3

N\ 11 1))(1 + X + X5 — 180°
..\‘. — — —_— + —
~\J W We | Wi i _1_ i
/ un Wag g
= 180° exactly (11)

The equations for Vi, Ve, and V3 are valid no matter how
large Fois. This is & case where there are no higher powers of
the residuals to be neglected, and Is in contrast with the more
general statement in footnote 4, page 52

Note that the residuals are inversely proportional to the
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weights of the observations; that is,

Fi:Va: Va_i‘ ll {12)
Uy We W3

Thus, in this problem, the adjustment by least squares simply
takes the excess or deficiency Fy {(which will ordinarily be a small
amount, perhaps & few minutes of arc) and distributes it among . O\
the three angles in inverse proportion to their weights (of. Ch. I,
p. 8). The student should reflect on this at length. If the)
action of least squares seems reasonable in this simple problam,
it may be so in more complicated ones, even if we arg} ot =0
easily able to vigualize its working. Even in more comp'ﬁmted
problems, the principle is the same (the minimizing df’) w res®
or of x¥?); it is only the conditions to which the ad%sted values
are subject that differ from one problem to a,nother

. ", s\
Fxercise 1. Show that the condition L7/

W

[ P BN 1SD° ' (2)

determines & plane distant 180° /\/3 from the origin, and cutting
equal interecpts from the axes.$The caleulated point lies on the
planc, and the observed poing) off it. If the weights are all equal,
the distance between the{observed and caleulated points is to be
minimized, in which c,&seg\the line segment, joining the observed and

calenlated points_isiperpendicular to the plane zy + xz3 + £3 =
180°, See Fig. 1)

If the wéfgﬁts of the observed angles are unequal, the distance
betwesfi’the observed and caleulated points is not to be mini-
mi ed"\but rather the quantity

O
o w(Xy — 21)% + welXy — 22)% + w3(Xa — wa)?  (13)

ol Exerczse 2. Any possible plane triangle is represented by &
\pomt on this plane for which %, x5, and #a2 are positive. Any
method of adjustment would consist of picking off some point on

this plane, corresponding to a given observed point X, Xe, X3 off
the plane.

Ezercise 3. Solve the triangle problem (p. 60) without the
Lagrange multiplier.

Hint: Take 8§ = L wV? = T w(X — z)? (14)
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0pa'D

—

CALL'D

/
R
2 o\

Frac. 11, The three angles of a plane triangle constifute the coordinates of
a point. The calculated (or adjusted) angles add Q\&SO" The point repre-
senting the caleulated angles lies on a plane dmtmﬁ 180°/'3 from the origin.
The obgerved point lies beyond the plane if phege is an observed excess beyond
150°, but lies an the under side of the planeqt’ there is an observed deficiency.
It lizs on the plane only by accldenb m whlch case ne adjustment is required.

By the one and only condltlon 0n “the adjusted values, we may take

zz = 180° — xz (15)
or \x{
V, = F\\Vl ~ Vs (16)

where, as befoxe,, o
1‘\ X+ Xy + X3 — 180°
Then \w
\ 8 = w V12 + waVa? + wg(Fo — V1 — Vs)? (17

A |
’o

(2, and x5 are independent; so are Vy and V,. Hence we may
\s’et dS/dV, and dS/dV: both equal to zero. The result is
wiVy — ws(Fy — Vi —V2) =0

« (18)
we Vg — wa( y=0

It follows that
w1 ¥y = sV, (19)
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and that
1 1 )
Vi= T T 1
g — =
W W Wy
1 1
- F
Vs w1 1 1 %%} (2@)
—t =+ O\
W (0} Uig ) N\
'\
1 1 >
=——F N
Va w1 11 0
Wy Wp s \\

which are equivalent to Egs. 9 on page Ql, obtained with the
Lagrange multiplier. R

~ All problems in least squares can thiaei:et-ically be solved with-

out the use of Lagrange multlpllens Occasionally it may even
seem easier to dispense with thém} but most problems then be-
come hopelessly involved, ast Kummell discovered.?

32, The plane triangle¢ontinued. The weights of the adjusted
angles, and any funcfion of them. Returning to the triangle
problem of the last\se\e’mon suppose we ask for

& i D The weight of angle z;
and N

2\
Th%ﬁreight of the sum of »1 4+ 23 + =3, after adjustment

Of com'se we know in advance that the weight of this sum must be
'mﬁmte gince we forced it to. be a definite amount, 180°; but it
\wﬂl be interesting to see if this result comes by the routine about
to be deseribed. The rules for finding the weights of functions of
the adjusted observations are illustrated in what follows, and a
more complicated example will be worked out in the next chapter.
The theoretical proofs will be found in several books on least
squares, for example, O. M. Leland’s Practical Least Sguares

" * Charles H. Kummell, The Analyst {Des Moines), vol. 6, 1879: pp. 97-105.
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{(McGraw-Hill, 1921) and T. W. Wright and J. F. Hayford’s
Adjustment of Observations (Van Nostrand, 1884, 1906).
Let
Gl =r: (21)

and
G® =2 + 25+ 5 23)¢

G and G® are then the functions whose weights are wanteds (As
many more functions could be added as desired, but here we shall
be content to see just the weights of z; and of 2y + 25 + ﬂ;& worked
out. The procedure is as follows. We need to form dertain sums,
and to this end we make up the following table, nﬂinencal values
ordinarily being inserted in place of the symholsin the body of
the table. F is defined by Eq. 3 on page 60,

Q ’s.
) @ 6 @ Gy NGB ) 8}
LR
; X 1 3 P . Dl B N
1 F [ G| G: v': }},_w“ '\f’w“ \/w“ Sum
S or
1 1 1k — —
{’ Vi Vv A
O 1 1 for numericsl
2 1 \K ! g 0 /g check
P 1 1
3 AN O 1 —_— 0
¢} V13 V103

o)
Next gt€p, from eolumns 5, 6, and 7 the sums called for in the
normal/@guations ean be evaluated, as shown below.

Fra 2
\}:\[%] = -1—.- I:F'G‘ ] = L, as defined on page 60
w

Wy

[G£1G£1] _ i, [:Gi2G£2] =T, It e I I o
Wy w uy

[ ] means summation, as in Section 27 (Gauss’ notation). These
sums are appended in the ! and €% columns, and the solution

proceeds.
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Row b = 1 o o2
PGt Gt
] L P [P L [RE).
U W wy
G‘-lG“l 1 l,2 ‘_2
z o[ (]
Wi w1 W "\
How obtained N
Fo FoFo o
Bao h —_—— —_— — - N + »
3 w1l X 7 7 ) .‘
FoFa "‘
Il 2+3 - &
1 N
I % = A>T
4 Rowl X oL RN
e O
AN w Lw?
L N
& RowlIx — = &0 L
. owix L N\ '0 )
e 245 -~ - 0

In a numerical 6fuﬁon, a sum column would be introduced at
the right for a check, and the spaces filled in by the ellipses would
be filled in with humbers (see the note in reduced type on p. 33).
For a numerital illustration see pages 82 and 83. _

Row/I\gives X\ = Fo/L, 8s already found on page 61. Looking
next/atthe “ 1’ column in Row II we see — FoF'o/L, which has the
valle — NFo, and which by Eq. 17 on page 57 is none other than

~(28. Thus, ¥ wV?is computed in a routine manner without first
\/ finding the individual residuals Vy, ¥y, and V.

The variance coefficient of G, or the reciprocal of ifs weight,
appears in the C* column of Row I'; and the variance coefficient
of 7, or the reciprocal of its weight, appears in the C? column of
Row 11Z,

_ Before adjustment, the weight of G* was wi, the weight of the
observation X;: after adjustment, the reciprocal of its weight is
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1/w; — 1/Lun?. Now of course

11 < 1

w  La?

which means that the weight of x; is greater than the weight of X,
That is, the weight after adjustment is greater than the weight before,\
which seems reasonable enough; the observations on the other t%o
angles help to estimate x;,"and to increase our confidence, in)its
value. After the adjustment we feel that we know morexabout
the triangle than hefore.

In particular if all three angles have the same welght before
adjustment, then if w; = ws = w3 = 1, the Welght of z; after
adjustment is 1/{1/w; — 1/Lun?} = 1/{1 ~1/8} = 1.5, which
is 50 percent greater than the weight of Xy, The adjustment
therefore increases the weight by 60 percen{ \I‘he same thing is of
eourse true for the other angles. \S

If the weight of an angle has been mcreased 50 percent, its
standard error has diminished 18~ percent gince .

ubefare a!tar = (S E. qfter- S E befnre) (See Eq 16 P- 22. )

Next consider the wejght of z; + 22 + 7. From Row LI in
the form above we sge\that the reciprocal of the weight of this
function is zero; in‘other words, the weight of z; + 22 + 5 is
infinite; it is gtherefore known absolutely. The adjustment
Jorced the sum\to ‘be 180°, and it is no surprlse to find its weight
after adjustiheht to be infinite. .

Thls\;mp{e example gives a glimpse of the method for the solu-
tion of\‘problems involving rigorous eonditions. A guide “for

systematic computation, and a- mmore- compltcated example, are
,..ga'?en in the next section.

V

ExXERCISES

Ezercise 1. Take the values of .V, Vs, and V3 found earlier,
namely )/, N/we, and /s, and show by direct substitution that
AF, the negative of the extreme left entry in Row I1 of the tabuld~
tion shown above, is actually S, or w1V12 + w2Ve® + w3Vs%
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Exercise 2. By the use of Eq. 7, page 40, show thaf the variance
of the sum z; + @2 -+ 23 of the adjusted angles of a plane triangle
is 0; hence its weight is infinite.

Hint: I3 = 180° — 71 — %2
whence ‘ A
Var (z1-t2etms) = o 2ot ot 2reoiae - 2r130u08 \
- 2re30a03 (Gj\
0'1?' = 0’32 + Cl's?' + 21"230’20’3 % :\..Ib)
g9f = 02 + 04® + 2r130103 f N (@
732 = 01 + o2 + 2riemioe \ .“\\\' (&)
By combining the last three equations W'Qh Eq. e it is found
that AN
Var (z; + 52 + 3:3‘}.%‘0 (e)

Ezercise 3. Observations Xj, Xg,. -, X, with weights wi,
g, - + +, Uy, are taken on n quantities, the adjusted values of which
are connected by the one coy@f’ﬁii)n

oy gt e on =0
'S
By making use of thgag:@(;heme outlined in Section 32 for finding the
weight of a funetion after adjustment, show that the weight Uy of
the sum 2y + 4% - - + @ v < 1, after adjustment, is

21T w

oP TIwTw
W]}Qlé\ .
QLA 1 1 1 ' 1
° 7w T w T
\3 r 2 r
and
1 1 1 : 1
W—w1+w2+"'+w—n=L
In particular, if wy = wy = =, = 1,
. . "
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Ifn=23and r=1, U, = 3/2, which is the special ease of one
angle of & triangle, already worked out on page 67. If n =4, as
for a quadrilateral, one angle, after adjustment, has the weight
4/3, the sum of any two angles has the weight 1, and the sum of
three angles has the weight 4/3.

This problem has application also in the social sciences, where
praportions are observed hy sampling methods, and the total
count is known from other sources (Ch. VII). For a cell thast, \‘\’
1s not too small (Le,, for one having a sample frequency of pas™ -
sibly 10 or higher), the weight of the observed frequency may be’
assumed inversely proportional to that frequency, and“the
varianee thereof equal to the eell frequency, A

Buppose that #;, and ne are the ohserved sample fljeqfue\ﬁcies in
& two-celled table, the total count of the two cells being known.

If 51 + ng = n, then ni/n and ng/n are the abserved propor-
tions, Denotethembypandgq. Thenp +¢571, L = 1/ +
/w2 = n1 + 73 = n, and the weight Ui the cell ny after

adjustment is given by the equation AV

= iance of ol __
7 variance '1?.} T w mnd

" LD

=ty r 1§ = npg

Thus the variance of )111} reduced from m; to npg by the adjust-
ment. The variange'ef the proportion p is reduced from p/n to
pg/n.  The ratighof the varianec after adjustment to the_ vari-
ance before adjustment is thus equal to g. The redl}ctaon in
variance is Couiderable when ¢ is small, i.e.,, when p is nearly
unity, qg{ﬁéﬁj)ens when #; is nearly all of n.

al
NS

’"\\ -
\:



CHAPTER VI

SYSTEMATIC COMPUTATION FOR GEOMETRIC
CONDITIONS 5 \\

33, Steps in the formation of the normal equahons There
will be observations, weights, and conditions unpOse& on the

adiusted values. ...x‘
Cbeervations: X, Xo, - -,\Xn ’
Weights: Wy, wz, \e,\'w“
Conditions: F(2y, Za, + * -, 2} = 0 |{)" (These are Egs. 3,
F?(z1, T3y« * -, Zn) =.~.0}. p. 50, except that (1)
P&y, o, « + - o) B0 here there are no
Pz, 2o, -+ y Taph=0 parameters.)

Ist step. Write down *{he conditions, i.e., select the appropriate
F functions. Decleg\also on the @ funetlons whose weights are
wanted. One thén works out the values of Fy, which will usually
turn out to be sm:all numbers, since the conditions will be nearly
but not qu{te  satisfied by the observations; see for instance
page 77. &

ﬁy the use.of the reciprocal matrix as explained in Bection 36,
One need not decide on all his & functions at the start; more can be
. \ Y added later without great inconvenience.

Q.

The solution will be illustrated with four conditions; ie., the

number » in Eqs. 3 on page 50 is taken as 4, which will be the
number of Lagrange multipliers (A\). Expansion or contraction to
more or fewer conditions is easy. (In the simple triangle problem
of Bee. 31, p. 60, there was only one condition, and one \.)
We shall assume here that we want to find the weights of two
functions of the adjusted values. Let these functions be desig
70
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nated as
Gl (xh &gy » vy xﬂ)

@ (1, 9, -+ -, )

(In the triangle problem of Sec. 32, ¢! was 2, and G2 w

x1 + x5 + z3; see p. 65.)
2d step. This requires some differential ealeulus. Tt consisty ™
of writing down the various derivatives that are needed, such as\

art aFt £\
Y oor — ' Fol - .\
! ax]_ ’ 2 or aZ2 (‘ 3
9F? )
F? or — F¥ or ,&\
3333 6ﬁ72

These are used for forming the L coefﬁcl&tta according to Eq. 14
on page 55. We shall also need the denvatwes of the  funetions,
sueh ag S

EeaR 3 Fle
t — Y G oo =
Gl or éixl ,n \ 2 6x2
1S
G32 or {gg H G23 or ——
\\ '3213 0zrg

th. )

which are to ba tsed in computing the weights of the @ functions.

8d step, \’Work out the numerical values of the derivatives; see,
for insthnce, page 78. In each case, the observed values X;,
Xy, 38 S&ﬂ are used in place of the adjusted quantities x;, g, « +
x,,,,ssmce approximate values of the derivatives are usually close
_ebough; at least they will have to suffice il we can get better ones.

he following table is made up, numerieal values being inserted in
the spaces. Naturally, more or fewer columns will be needed in
various problems, and different computers will work differently
¢ven on the same problem, The layout will also vary, depending
on what type of caleulsting machine is available. Only general
directions can be given in advance of a specific problem.
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TABLE 1 (3D sTEF)

1

% Wi - LA P S P G R Sum
3

1
2 .
. N\
. . . ; . . . . . AN
7 e e e e OV

A 3

The sums at the right in Table 1 are formed exclusive of 'th;\, éﬁtries for the
weights, They are useful in cheeking the formation of Ta’{)ks'z

4th step. Form Table 2, which is derived f¥om Tuble 1, by
multiplying the F and & derivatives by the gduresponding values of
1/4/wy, as indicated in the headings of Table 2.

a7

TABLI 2+
THE MATRIX FOR THE FORMATION .Ql;’;.'I:HE NORMAL EQUATIONS (4TH ®TEP)
i F{l ng ) o ” Fi't G,;l G,;2 Sum
Vg Vg ¢ Vw4 Vi VW 8
1 g\\
2 N Y
&~
xt\n'
n N
sud ... . L oo

~\: .E’able 2 Is termed & matrix because from it ig formed the normal equations.
Morecver, in matrix notation, the formation of the normal equations is the
product MM, M being the matrix of Table 2, and M’ itg * transpose.”

The sums shown at the right and aeross the bottom of Table 2 are used for
checking the formation of the normal equations. The sums themselves are
checked by adding them down and across, to see that they add to the same
grand total either way (the “ eorner check ),

There are various procedures that one ean follow in eomputing Table 2
from Table 1. With automaiie multiplication, the computer may prefer to
use 1/+/wy; as a constant factor in Tow 1, reading off the individual products
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(F/+/t5 ete.) and entering them in Tsble 2, cumulating the sym Fl 4
P34+ F& + F + G 4 G of the multipliers to check with the sums already
entered in Table 1. :

With a machine having two multiplier registers, one for cumulating
the quotients, and the other for reading individual guotients, the computer
may cumulate & st in either the horizontal or vertical without extra effort,
If the machine moreover permits the dividend to be altered independently of \
the keyboard, one may set +/w; on the keyboard and use it for g dixjsor
throughout an entire horizontal row of Table 1, entering the individualigle-
tients in Table 2, and at the same time cumulating the sum s; to be“eitered
at the right. O

The use of punch eard eguipment for forming normal equatibﬁs;~may save
time and expense on large projects. .\\

6th step. The coefficients in the normal equatidns are now to be
formed from Table 2. By recalling the deﬁni@@n of Ly, in Eq. 14
on page 53, and by introducing the €' add@>C? columns for the
weights of the & funetions as used in Chapter V, we may rewrite
the normal equations of page 59 ih)the form shown below.
It wiil be observed that the term$en the diagonal are sums of
squares formed from the columngief Table 2, and that the terms off
the diagonal are the sums efeross-products formed from these
columns, The numbers extered in the € and €2 columns are like-
wise the sums of squarggq\,nd cross-products,

&

O\ NORMAL EQUATIONS
Unknbons
Row g '\2" Az o o=1 ct €% Sum
. [F.-lptﬁif R FHF,-“:I |:F.‘1F.‘4] . ”F;IG.-I:I RG]
W ws wg w; | w; L 1y
Ay FPEFRE) [FEFST [FF ié] P [F. szG'il:’ 704
) ][wi g L L owy )T

25
\ ) Wy
3

3

B8 3 ‘_4 -F"a(}'.'!‘ -F‘.BG‘,T
[LEEE) [ER] o [REOE] [2062)

Wy Wi | L wy
s No entries below the diagonal F,-“F‘-“:I . _F.“iG'.'l] [F i‘G'iz]
because of symmetry 15 Ll | w;

"G;ngl] ESd

L Wi
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"The sum column at the right checks the formation of the normal
equations. Herein are entered (in pencil) the cumulation of the
eross-multiplications formed with the sum column of Table 2; these
should agree with the sums of the terms in the normal equations, the
«17 golumn excluded; see Table 3 in Bection 34, and the check
formed immediately below. If no errors are found, the sums entered
in pencil at the right of the norme] equations are altered to include ~
the ¢ 1" column, and the solutien procceds, being checked at the
pivotal points (see the check marks in Rows I3, II11, and IV of )\
the numerical solution in Sec. 34). The sums [G{G:/wi] end K
[(42G#/wi] must be checked otherwise, as by repetition. N

The 0 in the bottom row of the normal equations is appéﬁdbd for
the computation of the minimized sum of squares, S. Thecelumns
¢ and C? assist in the computation of the weights of’fhc functions
G and G7. ’

~
The solution of the equations is to be cdrfied out by the routine
process already seen in simplified form \on'page 66, and to be illus-
trated more fully on pages 82-83, and symbolically on page 158,
When the numerical values of th¢"Lagrange multipliers (A) have
been worked out, the residuails}'?'i, .+, V, are to be calculated by
Eq. 12 on page 54, and then Yised to find the  adiusted observa-
tions ” 2y, ¥z, * * - ¥x agfolows:
+{)
N °
n=X1—-V; X1~ o O F s+ A F 2 4 N F 1P APy )

¢

..\'" 7 1 : o
To = Xg™> V2_= Xy— e (MFst '_'["7\21’122 R W ASS WY

A )

Ay

D
mJ 1
O ta=Xn=Va=Xa— — OF $MFHAeFn" 0T 0")

4

Tt should be noted that the numerical values of the derivatives
Fil, FJl, etc., required in the parentheses, are ready for use in
Table 1, p. 72. '

84. Numerical example: a surveying problem. A surveying
party measures the sides and angles of the plane triangle PQR,
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with the following results:

On angle P:  51° 06 P
(4 observations) 08

05

06
Average 51°06'.25

On angle Q: 95° 05
(2 ohservations) M

Average 95° 04'.5

On angle R: 33° 49/

(2 observations) 50
Average 33° 49 5 Fia, 12, he sides and angles
of thla e triangle have been
. . mea,sured The sum of the
Stfie p: 17237 fﬁ' R a,d]usted angles must be 180°;
gt 22054 o\ ‘and the adjusted angles and
pr 12327 ¢ W+ sides must satisfy the sine law.

The transit man, from “pre{rl’ous experience, has reason to believe
that the standard errptof single measurements on one angle is
about one minute of\ c or 0.00029 radian. He takes the standard
error of the chalnmen to be one foot in 10,000 feet, and in propor-
tion to the squag"e 100t of the distance chained. The weights of the
obsewatlon,\on the angles and sides are then in ratios as follows:

* - \‘ L] - . 4 - 2 b
wp QR 1wy sy iy = 0.000 267 * 0.000 267

ad

A 2 ' 1 2 ) 1 2 . 1 2
<7 0.00029% ° \; 1724 | | 2208 1233 | @)
10,000 10,000 10,000

These ratios come from Eq. 13 on page 21, wherein the weight
of a function f was defined to be inversely proportional to its
variance. Since weights are relative and not absolute, the factor
of proportionality (¢?) in Eq. 13 on page 21 is arbitrary and can
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be chosen for convenienee; accordingly we let

o2 =1 0000292 = 423 X 107® (5)
whereupon the weights take these simple values:
wp = 2, wg = 1, wg = 1, \ N
8 —8 - @)
= 24.6%X1078, w, = 19.2X107", w, = 34.3X10
)

Tt should be noted that the final adjusted values of the sfdes and
angles, also their standard errors, are in no way dopen,dept on the
arbitrary choice made for o%; if ¢® is doubled, all tha wéights are
also doubled, and the standard crrors of all fn:n\eflons are left
unaltered. Likewise x* is unaltered.

The solution of the problem proceeds now: gecording to the steps
outlined at the beginning of this chapter (Sec 33).

1at step. The adjustment must bc _earried out to cnforee the
following three geometrical condltlons

mnfﬁé'st:st o)
pA g r

<\
.Q’$Q+R=180°+e &)

€ being the sphcncal excess, which, owing to the small size of the
triangle, will he¥e’be taken as zero.  If it were other than zero, Fo®
(Eq.10) wotltVbe altered by the amount ¢, and the adjusted values
of the widés and angles and their standard errors would all be
aﬂ'ectpa‘m an obvious manner.

’P\‘br‘forcing the three conditions, let us set

m\./

) snP s
\ FI(P}Q,R,}),Q’T')= _M
p g
F2(“ (114 (14 [T 1] “) —_ Sm P _ Sm R (9)
Y T

F3(u [T “““)=P+Q+R—-1800

{The number of conditions is 8; ie., the number » occurring in
Eqgs. 3 on page 5018 3.)
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FY, F%, F? when evaluated do not give zeros, but give the small
numbers Fy', Fo?, F¢®, which by direct substitution are found to he

sin 51°06°.25  sin 95° 04’5
17237~ 22054

—1.3271 X 10~7

sin 51°06°.25  sin 33°49' 5
17287 12327 r 89
= —0.5416 X 10~ D

Fo® = 51°06".25 + 95° 045 + 33° 40”5 — 1808
= 07025 = 7.27 X 10 radian (0

Fﬂl =

F02 =

If it had happened that the observations satished the conditions
exactly, then F', Fy? and F® would have tinenied out to be zeros,
and the adjusted values would have béenidentical with those
observed. As it is, the observations Satisfy the conditions nearly
but not cxactly, i.e., Fol, Fo?, and Fo? are small but not zeros,

Fy® is the amount by which thesim of the angles exceeds 180°.
In the simpler problem whergitrthe sides were not measured (vide
supra, See. 31) it turned outithat the least squares adjustment
was simply an apportion{nent of this discrepaney among the three
angies in inverse propérion to their weights. N ow, however, the
sides ar¢ involved; "wherefore the adjustment, though possibly as
reasonable as before, will not be so easy to arrive at. By looking
ahead to page 84 we see that, in contrast with the residuals on
page 61, the¥djustments on the angles will not now be all in the
same diréction.

Now siippose that for some reason or other we should like $o
kngﬁ{'{he weights of

“\Angle P
N\ The sum P+ Q@ 4+ R
The area of the triangle, which may be expressed as 3pr sin @

Any number of others could be added (at increased labor) but three
will suffice here. For those just named we take the three @
funetions

=P, @F=P+Q+R F=3psnQ (1)

Q
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2d siep. 'The derivatives of the F functions are
P b
Fol = cos P o2 = cos Pt = 1
P p
Fit = =29 2o Fgt =1
q '..\
cos R
Fp' =0 Fp? = — T Pt =1 KON
b - SRS N ¢
sin sin B
Bl = — F2=— =0 ~\
B p2 P p2 P ' \
& g
FQI — 21 Q ng =0 FqS =0
¢ S
Fl=0 pr=22E o
7 O
The derivatives of the ¢ functiqqs: are
Gpl =1 Gl =1 'v“;'”GP:;‘—_O )
The other Go? =1 ,jf;" Gg® = Zpr cos Q
five derivatives Gg? =1 Gg* =0 I (13)
are Zero The@‘gher Gp® = §rsin @
thrge derivatives G° = 0
x ate zero @F =3psinQ

N/
3d step.»The nearest numerical approximations that we can
produe&"fgjr these derivatives are found by substituting the

obser¥

“angles and sides into the expressions just worked out,

ap\d’ofhese approximations will be more than close enough.

o~

N\

\
4

TABLE

1

Tas pERIVATIVES (3D STEP)

i 05 Vg | 1071 1082 FRlet GE 0 GA
P 2 1.41 264 364 1|1 1 0
Q 1 1 40.1 0 t|{o 1 93018
R 1 1 0 —R74 176 1 0
p|24.6-107% 4.08.10%; —0,262 —0.262 0|0 0 6139
¢ 1192 " 438 “ 0.205 0 ole 0 0
ria3 “ 58 ¢ 0 036 0l0 0 885
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4th slep. 4/w is now used as a divisor to form Table 2 from
Table 1.

TABLE 2

THE MATRIX FOR THE FORMATION OF THE NGRMAL EQUATIONS (4T STEP),\

W07 10872 FE gl g 107968 Sittn,
F _ -—_ — —_ _— £\

V10 VUi N Ve v AN
P 0.257  0.267 0.707 0.707 0.707 0 _\ .0635
Q 0.040 0 1 0 1 —0,084 15 1.946
R 0 ~0.674 1 0 1 ¢ | 1.3%
» —0.528 —0.528 0 0 0 238 | 0182
q 6.468 0 0 0 0 0 0.468
r 0 0.625 0 0 0,.\) 1.466 | 2.000
Sum 0.237 —-0.320 2.707 0.702.2%07 2,609 | 5.647¢

The powers of 1G in Table 2 gre’;chosen with regard to conven-
ience, and to bring the numbgh of decimals to uniformity from
column to column, to facilitate the cumuiation of squares gnd
cross-produets i forming “the’ normal equations (the next step).
At this stage one may alis, cut off superfluous figures, reserving, as
a rule, not more thap-{hreée or four in the largest number oceurring
in any one column{ “This often means that some other entries in
the same colurgn appear as zeros, but this is as it should be,

ik step. THe cumulations of squares and cross-products from
the columps of Table 2 provide the coefficients required for the
nom%éﬁﬁtions (Egs. 2, p. 73). For instance,
"\

R gt
PRSI [u—] = 0.257% 4 0.040° 4 02 + 05287
mJ w

N/ + 0.468% + 0% = 0.565 (14)

as seen under Xy in the normal equations. Also

10| 28 i ]

w

0.257 X 0.707 4+ 0 — 0674 +04+0+40-+0

= —0.492 (15)

1 The subscript ¢ will be omitted for convenience oceasionally.



80 CONDITIONS WITHOUT PARAMETERS

[SEo. 34]

as geen under Ag.
ing in Table 3.

The student should verify the whole set appear-

TABLE 3

THE CUMULATION OF SQUARES AND CROSS-PRODUCTS FROM TABLE 2 FOR THE
FORMATION OF THE NORMAL EQUATIONS

a3
S

Fipl P £ q
108 - ] = 0.565, 10°% [—w = 0.345, 10-’*[ =222
w v
_ I\
F2F2'| 2 a3
106[ — 1190, 108 [F—«—.F L1 —odm
w et 2
{ Epams
SEE] - 2o
* w
Flgt Para AL 115
103[ " :I =0.182, 103 FG& 0.222,.\*.\ 10— [ﬁ 1 2 _ossr
wo ! A Nt W
FigL 22 P \% 2]
108[ - ] = 0,182, 10% F G] = .7’0,492, 10-* F = 0.262
Figl L '“ 33
[ " :l = {1.500, [F—gr = 2.500, 108 [E‘wi = —0.094
T .
GG Ao |
— | = 0.500, ...\[G ¢ :I = 2.500, 102 [(’wG = 3.687
LANL v _
&M =
p N\ s | 2 parse
R . w
Y
S\ Fzs]
A, —_ 2| = 0.094%
% k=

= 5.135*

e
w

‘\.'

\*Check (Powers of 10 are disregarded in the sum checks):

"N
\ 0.565 4 0.345 - 0.222 4- 0.182 4 0.222 — 0.657 = 0.879
0.346 + L.190 — 0.492 4 0,182 — 0,492 - 0.262 = 0.995
0.222 — 0.492 + 2.500 + 0.500 + 2.500 — 0.094 = 5.136

The sums formed below the table to provide a check do not
agree exactly with the numbers starred in the table, which are
formed with the sums s; of Table 2, but the agreement is within
errors of rounding off, whereupon we conelude that the arithmetic
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in Table 3 is correct, save for the three [GG /w] sums, which must
be checked independently, as by repetition in reverse order. The
cumulations shown in Table 3 are then entered into Rows I, 2 3,
4 of the tabular secheme for the normal cquations on the two fol-
lowing pages. The numbers entered in the “ 1" column of Rows
L, 2, and 3 come from the values of Fyl, F,? and Fo® on page. 77\
after multiplication by appropriate powers of 10 to produce deci
mals of the same denomination as the other parts of the Hormal
equations. (The factor 107® applies to the whole of the * 1"
column.) .

The sums at the right of the norma] equations a.relhot the num-
bers 0.879, 0.995, and 5.136 previously seen in.“the cheek under
Table 3 but are these numbers to which have boeh added the corre-
sponding entries of the “ 1" column; the :nbrinal equations thus
start off with a sum column that provides“checks at the pivotal
points of the solution (note the checkmarks in Rows 11, IIT, and
IV). o\

The solution proceeds accordifg*to the directions under “ How
obtained.” The same system\of solution has been seen in simple
problems on pages 20, 33, and66, and will be seen again on page 158
and in Chapter XI. Q

3b. Conclusions frgin ‘the solution of the normal equations.

1°: From Row QI“

@8 or TwP?=0042-107°
It follows fmm Eq. 21 on page 28 that
\\I}ftexz) =0.042-1075 + (6 — 3) = 1.4-10"®

Singe?%lﬁs is only about one-third the prior ¢2 arbitrarily chosen on
D¢ 76, we conclude that so far there is no indication of blunders in

\the observations or recording. )
2°: Rows 13, 12, and 11 in the solution on pages 82 and 83 give

A = —0.308, Ay =0.073, A3 =0.071-107°
These used in Eq. 12, page 54, give
Ve = $(\Fp! + MFp? + \Fp?) = —0.0000075 radian
= .03 min, :
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COMBINED S8OLUTION OF THE NORMAL EQUATIONS, THE COMPUTATION

Tnknowns
Row 107y 1075 107% = 1
I 0.565 0.345 0.222 —0D.133x107°¢
2 1100 —0.492 —0.084
3 2.500 0.073 &
4 0 A
Factors \' \)
6 0.345/0.565 = 0.6106 —0.211 -0.136  (0%081
I 0.979 —0.628 {™0.027
6 0.222/0.565 = 0.3929 —0.087 ¢ 0.052
7 0.628/0.979 = 0.6415 —0¥a0: 0.017
il Q 2,010 0.142
8 0.133/0.565 = 0.2354 D -0.031
¢ 0.027/0.979 = 0.0276 ) ~0.001
10 0.142/2.010 = 0.0706 e\ —~0.010
v N\ -.042
13 N 10-t5; = —0.308
12 A 10~%h = 0.073 px107°
1 O 107%; = 0.071
L

14 0.182/0.565\= 0.3221
15 0.071/0(879 = 0.0725
18 0.474/2:010 ~ 0.2358
m
{ ’\‘s.
\\w,
1A\ 0.222/0.565 = 0.3929
418" 0.628/0.979 = 0.6415
ANN18 0 2.010/2.010 =1
;IvE

20 0.657/0.565 =1.1623
21  0.663/0.979 = 0.6772
22 0.589/2.010 = 0.2930
Ws

(The powers of 10 written at the tope of the 1, C*, €%
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oF ZwV? AND THE WEIGHTS OF TEREE FUNCTIONS
ot c? o Stm
0.182X107%  0.222X107% —~0.657X10° 0,748+
0.182 —0.492 0.262 0.941+
0.500 2,500 —-0.004 5.200+
0.500 2.500 3.687 6.573 A\
How ohtafnéd.\
—0.111 —-0.136 0.401  —0.458 If—O‘ﬁiﬂg)
0.071 —0.628 0.663 0.485v  (2)-H(5
—-0.072 —0.087 0.258 —0.203 T(20.3929)
0.046 ~0.403 0.425  0.311 ,IN10.6415)
0.474 2.010 0.580 5.227NNE + 6) -+ ()
0.043 0.052 —0.155 0.176 N 1(+0.2354)
—0.002 0.017 —0.018  -0.413 I1({~0.0276)
—0.033 —0.142 —-0.042 0 369 IT1{—0.0706)
0.508 2.427 3.472  UB.367V () +(8)+®)
R\ +(10)
AN Subst. from (11) & (12)
R into I
~ T Bubst. from (11}
RA inte II
ke II+2.010
~0.089 b\ 1(~0.3221)
—0.005 D) 11(—0.0725)
—0.112 \ & HI{--0.2358)
0.324 A\ (4)+(14)+(15)
- \" +(16)
\\ ~0.087 1(—0.3029)
,‘\ © =403 -II1{+0.6415)
AN —9.010 III{-1}
~\J 0.000 4)+(17)+(18)
\ } ——— +09
—0.764 I(+1.1623)
(). 249 11(—0.6772)
—0.173 II1{—0.2930)
2.302 (4) 4+ (20)+ (21)
+{22)

and €? columns are understood o apply all the way down.)
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VQ = M_FQl —+ }\ZFQ2 + }L3FQ3 = (.0000582 radian

= 0.20 min.
Vg = )\1FRI + Rgng + KaFRS = 0.0000214 radian
‘= (.07 min.
5 p
V._g = 51'4?_6 (th + }\2F + R3F 3) = 025 ft. \
,\j\
10® . 4 ’
V= Tos (MF +ng + 2P = —033ft~
i) 4 {
V, = }i (MFL - Mol + WF,3) = QOB .

for the six residuals. It i8 important to nb\e that the numerical

values of the derivatives required hcre a}e already worked out in
Table 1, page 78.

3°: By using these residuals thh .'Eq 6, page 52, we find that the
adjusted value of AN

Angle P is 512 06’ 25 4+ 0'.03 = 51° 06".28

Angle Q 35\95° 04’5 — 0'.20 = 95° 04730

Angle sQ\ls 33°49°.5 — 0/.07 = 33°49’ .43
Side p is 1723.7 — 0.25 = 172345 ft.
Slde g is 2205.4 - 0.33 = 2205.73 “
\ Side » is 1232.7 — 0.08 = 1232.62

¢ r.'s. Perfect closure (third condition on p. 76) may be
2 ';g.ecuréd by lowering angle B by the trifling amount 07.01; the value
/% 38° 49,42 s0 obtained, along with the other adjusted angles and
«  gides just written, will satisfy also the first and second conditions on
page 76 to within 1 part in 3 million, which is sbout all we should ask
for. Whenever, as happened here, one or more of the conditions
fails owing to cumulated inexactness of rounding off, the somputer
is at Hberty to manipulate the termmal figure of one or more of the
remduals, raising or lowering it & unit or 50 to force the conditions.
If not inconvenient, he will ordinarily (as was just done here)
select the quantities of least weight for any such manipulations.
The amount involved will be small compared with the gtandard
errors of the final results (ef. also p. 229),

e
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&

4°: The wcights and the standard errors of the three @ functions
(. 77) are found as follows:

From Row IV! the weight of the adjusted angle P ig
1/0.324 - 107° - 10%% = 1/0.324. In other words, 0.324 is the
variance coefficient of angle P. Then with ¢ = 423 . 108
(p. 76), it turns out that the standard error of the adusted
angle Pis (4.23 - 107° - 0.324)' = 1.2 - 10~* radian = 0.40 mip. So

Angle P <= 51°06'.3 - 0’4 R\,

From Row IV the weight of the adjusted sum of P +4 £ Rig
1/0 or <, as predicted. Hence the sum of the ad'jt;sfted' angles
would be written AN

P+ Q4 R =180° absolute{yQ

From Row I'V® the weight of the area 3ng Q‘n}ﬂ is1 /2.302 X 10'2,
Its standard error is therefore (4.23 XU X 2.30 x 10'2)t =
312 square feet; therefore the adjustedvalue of

The area is 10580284 312 sq, ft.

The area would better be_ Written (105803 == 31) X 10 square
feet, since not more than two figures of the standard error could be
assumed Lknown. In sites,

N\
The a}"\:aa = 24,2890 4 0.0072 secres

The area jaﬁéﬁﬁﬂ by using the adjusted values of p, g, and R and
taking §pg.8in’R.  Of course one could as well use dgrsin Por 3pr
sin @ fordhe area; one is a3 good as snother.

Exergi&t Prove by Eq. 9, page 40, that after adjustment the
weightvef the area is a little more than double its weight before

axljjlﬁt-ment. .
Hini: By using Eq. 9 age 40, we find that
Y g Lqg. 9, p
1 1 1 cot? B
= area2]l — + =
waraa v Wy 7 wﬁ Wr

= 1.12 X 10*% {1.37 + 1.07 + 2.24}
= 5.25 X 10 before adjustment
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Therefore
Worea = 0.19 X 1072 (before)

We had
Wy, = Weight of G = 0.43 X 1072 (after)

The result stated follows at once. A

Exercise 2. (From L. D. Weld's Theory of Errors and.léast
Squares, Macmillan, 1916.) Take the line AB, on whick ‘azé lo-
cated points ¢ and D. The whole line and ifs sogm\ents are
measured with the same rule under similar conditiofs, Ahe results

being \\
X, = AC = 45,10 cm,, mean of 2 ohgervations
X;=AD = 7796 « % “ @)~
Xs=CD= 3295 « «&p ¢
Xs= CB= 0836 “ V93 “
Xs=DB= 6555 “\“ “2 “
Xo=AB = 14355 &4 ¢« 4

A ~ c 5 8

Fia, 18, The qunhd its segments, corresponding to Exercise 2.

Problem. Fmd\he least squares valiues of the lengths.
Takewl——Z, g—3103—2’£04—3 ws = 2, wg = 4

Conditionky”
\Y 1
§~ Fr=azitaostas—ae=0
N PP=g —as+as =0
~O° F = B3~ %y + x5 =0

\/ Show that the normal equations are as follows.

Row I Az N = 1 Sum
I 21 12 12 60 - 1072 105
2 16 6 108 142
3 16 168 202
4 0 328
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Solution:
A= —=01145, Ay = +0.0952, 23 = +0.1552

Residuals:
Vi = —0.0096 em.

Ve = —0.0317 * N\
Vie= —0.0517 “ Eq. 12, p53)
Vs = +0.0203 “ A\
<
Vo= +0.028 “ .50
Adjusted values: D

AC = 45110 emg ©
AD = T7.902
oD~ 32
B = 8412 ¢
DE- 65530 ©
(<MB = 143522
(4B actually t-qr.fgs:obut to be 143.521 em., but the last decimal is

raised one unitNi satisfy the first condition. The other two con-
ditions are_ datisfied perfectly by the adjusted segments. )

Exerm}a.’f’; (a) By RowIVin the solution of the normal equa-
tionswof ‘the preceding exercise, the minimized value of T uwViis
0.9246.

\\‘(b) Find 3'wV? by direct computations, using the values Vy,
Vs, cte, found in the solution. Ans. 0.0246.

Ezercise 4. Find the standard errors of 4B and AD, taking the
standard error ¢ of a single measurement. to be 0.05 cm.

Ezercise 5. (a) Show that the estimate of « made from ¥ wV?
is o {ext) = 0.09.
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(b) Show that, with ¢ = 0.05, x* = about 10, and P(x?) = 0.02,
wherefore we might say that the discordance between the observed
lengths of the segments is somewhat larger than one might expect
from previous experience,

Note: Since the individual measuremenis were not recorded,
there is no possibility of estimating « from the original observations;

i.e.,, we have no & (#nt) to compare with the prior ¢ and o (ext). € M\

Q"

Exercise 6. The three inside edges of a re(:.tz.mgu]&.r‘j;arallele-
piped are measured with calipers and a lincar s,p’sflé‘; and the
volume is measured in cubie units by filling it “1th tereury, which
is afterward poured into a praduated cylinderl) The results of &
set of observations are as follows:

r &’
s S
N7 Stal
{SElean . Ell.ld!fl‘
- deviation

)

On edges paraliel to the = djrect-'m};; X {em.} 71 #1 (om,)
N 173

On edges Y dire(}tﬁdn, X. s #2
Onedges “ % % :direstion, X, - 3 g
On the volume, ( X {ec) g g: (ec.)

R

If randomnes%\}las heen demonstrated, one may pool the
standard devialions of the measurements on the three sides to
get an estimate of the standard error of a single observation on a
linear meastrement. If oy denotes the standard error of a single
lineargeasurement, then one would write
R\ Y A1812 + Nase? + mass? (Cf. Eq 67 in _Denung
AN 01 (est'd) = P RP— and DBirge, cited on
‘. J 1 2 3 r 29‘)
4

¥ n1 + ne -+ ng is fairly large (20 or 30), this estimate will be
relisble enough.  For o4, the standard error of a direct dctermi-
nation of volume, one would likewise write

?’2.4842

2 Py =
g4 (88 ) g — 1

If ny s as large as 20 or 30, this estimate will also be relizble
enough. Affer obtaining estimates of oy and ¢4 one would
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assign weights to the observations X1, X3, X;, and X, as follows
{see Eqs. 18, p. 26):

?’2._102

W = —
71
ﬂ.zo’g

Wy = —
o1 N\
?130’2

3 = —%& N, ¢

o2 ¢\
nya? O

Wy = —— g ™
¥y 3

N

&% a3 in Section 11, is an arbitrary factor of proportjof\mlity, the
standard error of observations of unit weight. JIfibis set equal
to o, we should have the convenient systen of\weights,

2
Wy, Wa, Wi Wy = Ay, N, ?:lsl\‘k—fal‘
Voo
The weights having been settled Joapave can proceed. The
one and only condition on the adjusted values is that
Xy = Sl'-;lx%i:’ia
whenee we put &Y
FSw — mmmg
SBuppose we need tf@ standard error of the volume after
adjustment; we sef;w}
H '\\"' G =14
(e¢) Show thatthe one and only normal equation is L\ = Fy,
whence A = F¢/L, where

o o] 1 1 1 1 }
'x"ff’— s X\ P + Xo s T X5%ws + K42y
(b);\In tabular form, the normal equation for finding A, 8, and the
) ”\we}ght of the adjusted volume, is as follows:

\ 7 Row A = 1 [
I L Fg l/wi
2 0
3 —Folo/l
I ~FoFy/L i
4 —1/Lw}*

I {L/w) (1 — 1/Lwy)
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{e) The weight of the adjusted volume is {1/24)(1 — 1/w.L).
(d) (The standard error of the adjusted volume)® = o7 (1/wy)
(1 -1 / w,;L).

This standard error is smaller than the standard error of the volume
hefore adjustment by the fractional amount 1/Lan,2.

(e) The minimized sum of the weighted squares of the re&dua)s
S, is Fgh. O\
(f) The estimate of ¢° by external consistency (Sec.(18) is

F())\ ...'( '
4—1 ...'\"

o2 (ext) =

() What would you say if o®(ext) were&much larger than your
assumed value of &%, ie., P{x) small? , \

Suggestions: Edges not parallel; laok‘of pcrpendlcularzt}, measure-
ments not so good as initially s,upposed (i.e., @1 OT o4 to0 small};
just happened to be so. RS

."v
N

(k) Show that after adjustment the standard error of the first

edge is
m\
O, [11-2X,
\ wy XL

36. Shorte? method of computing the weights of a large number
of funct:é‘ns Z The theory on which the weights of the three G

funcb\ns were calculated in Seetions 34 and 35 rests on the fact
tha,t

"\'1

Ot ®

[gg] _— [‘F_q] B? . [ﬂzﬂ B” _ I:KG] B!f! (16)
w wl Lw w
%To be omitted on first resding; the sﬁggé_stion is that the reader return to

this after a study extending through Section 81.
® Ganss, Theoria Combinationds (cited in See. 13), Art. 29.
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where B’, B”, and B’ satisfy the equations

-l
LB + LipB" + Li3B'Y = F_G]

| w

-2
LB’ + LypB" + LyB""' = —w“g] ’ N

- 3 L\
LgiB' + LapB" + LasB’" = —G] o\

. | w \/

In other words, the auxiliary constants B, B” @hd B' will
satisfy the normal equations (Eqgs. 2, p. 73} if the %€V’ column

i
[F G] ’:t\\JQ
T ..\ W
[Fz(;l:;}‘
LRSS
e

replaces the “17” colpg:nﬁ.\
One may, if he cbq‘séés, solve for the Lagrange multipliers, and
any set of auxiliagfyeonstants B, B”, B""' as well, by first of all cal-
culating the ;‘e@i};)fécal matrix
x:\"'
Q) Gz G (See Exs. 2, 4, and
\Q\ - [ e Om 5 of Sec. 61.)
Cai €32 Cs3

(18)

& N

“and then using it to caleulate the Lagrange multipliers and the
\auxiliary multipliers in the manner following—

A = Folen + Foae + Foleys
Ao = Foley + Fo®cos + Foless ¢ (19)
As = Folesr + FoZeae + Fo'ess
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. [FC s Al
B =|l—leun+|—|cz+|—]c
| w | | w | w
B =1 “ len+} “ |ewm+]| © ]623 ‘ (20)
B" = “ Aegm+| “ |egadt| ]633 ~

The Lagrange multipliers (X), after being caleulated (from

Eqs 19, are used in Egs. 12, page 54, to compute the residuals Vl,
Vn, just as was done on page 81,  The auxiliary cqnsfants B,

B” and B’ from Eqs. 20 are used in Eq. 16 to {ing: the weight of
the function ¢. It will be noticed that the cooﬂiewnts multiplying
the ¢ coefficients in Egs. 19 will already be availihle from the first
step, outlined on page 70 and carried out nugierically on page 77.
The brackets in Eqs, 20 arise by cumu}ﬁ@ing squares and cross-
products from Table 2 of the fourth 988 X(pp. 72 and 79; summed
numerically in Table 3 on p. 80)., ¥t is not difficult to extend
Tables 2 and 3 to take account of¢ a new G function any time it is
desired to introduce one. .

The work then procecds® mpldly, the reciprocal matrix A™
being used over and overdn Eqgs. 20 for all the @ functions. If one
is working with & fairly good-sized number of G functions, this
scheme will save co}xs derable time over the direct computation
illustrated in Secfion 34.

A distinet ad¥antage of using the auxiliary multipliers is that
the reciprocadtnairix, once computed, is ready for use any time a
new ¢ §lumn is produced, whereas, with the direct solution in
Sectmn it is no little trouble to introduce a new € column after a
soll(tm’n has onee been carried through.

“\Fhe three ¢ functions used in Section 34 will serve for an illus-
tfation. To calculate the reciprocal matrix A~ we take the coeffi-
cients of thc unknowns in the normal cquations on pages 82 and 83,
and put the unit matrix on the right of the equality sign, thus
starting off with the equations

0.565 - 10°% + 0.345 - 10% 4 0.292 - 10%2 = 1,0, 0’
0.345 - 10% + 1,190 - 10% — 0.492 . 10%: = 0, 1,0} (21)
0.222 - 10°% — 0.492- 10% 4 2,500 - 10°%z = 0, 0, 1
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The letters x, me designate the three unknowns that are to be
solved for. Bince there are three constant columns on the right,
there will be three different solutions. The simplest way t(;
obtain them would be to follow the regular routine for sol;'ing
normal equations, as Hlustrated in Sections 34 and 61. How-
ever, one unfamiliar with that procedure may make three sepa-

n 3 1
rate solutions. First, one would use the eonstant column 0. N\
0
By any methed of solution whatever he would ohtain O\
&= 2458 X 10° O
y = —0.875 X 10° A\
2= —0.391 X 10° O\
A,
Becond, he would use the constant column 1 a.nd find
R
= —0.874 X 18 ©
y= 1226 X10°
z= 0319 X10°
N 0
Third, he would use the cafistant column 0 and find
“3 . I
La= —0.390 X 108
+8 0 = 6
\Jy= 0319 %10
2o 0498 X 108

The reciprQ‘é::;ﬁha,trix is simply & convenient way of filing these
results sysfematically. It is written like this:
A& 2.458 - 10° — 0.874 - 10° — 0.390 - 10°
A= | —0875-10°  1.226-10° 0.319-10°| (22)
~N —0.391-10° 0.519-10° 0.498
~ he occagional failure of symmetry in the third decimal place
comes from not earrying more figures; but what we have is good
enough, Supposing that the Lagrange multipliers have not been
worked out, we should next compute them from Egs. 19 as follows:
M = —0.133-2.4584-0.054-0.875—0.073-0.391 = - 0.309
hp= 4+ ¢4 0.874— ¢ 12264 ¢ 0.3189= 0,073 } (23)
10 = + % 0390— “ 038194 “ 0498= 0.071

o
&
&«
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These agree well enough with the values —0.308, 0.073, and 0,071
already found in Section 35 (conclusion 2°, p. 81).

The chief aim at present is to compute the auxiliary constants
B', B", B’ for each of the three G functions of Scction 34. Going
back to Table 3 in Section 34 for the coefficients needed for Fgs. 20,
we find that

"\

For Gl N

= 10%{+0.182- 2.458 — 0.182-0.875 — 0.500 - 0391l M

= 0,0083 - 10°
B = 10*{— 0.182.0.874 + 0.182 - 1.226 + 0.500. 6310} o4

= 0.224 - 10° R r ()
B = — 0.182-0.390 - 0.182.0.319 420,500 - 0.408

= 0.236 AN )

These values used in Eq. 16 give s\

;tL of G* = 0.500 — 0.182 - 0.0933,~ 0.182 - 0.224 — 0.500 - 0.236

TR Y

= 0.324 (25)

That is, the weight of G} = 1/0.324, in agreement with conelusion
4° in Bection 35, page-85.

For G2 \\ ;
B’ = 10°{ 01222 - 2.458 - 0.492 - 0.875 — 2.500 - 0.391} )
= 0.00133" 10°
= Y~ 0.222-0.874 — 0.492.1.226 + 2.500..0.319} | @6)
\000028 10°
B’{’ — 0.222 - 0.390 — 0.492-0.319 4- 2,500 - 0.498
g N = 1,0015

A, These used in Eq. 16 give

1 o
m— of G? = 2.500—0.222 - 0.00133 — 0,492 . 0.00028— 2,500 - 1.0015
= —0.004 (27)

Since weights can not be negative, we may suppose that this
negative result arises from not carrying enough figures. The low-
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est possible result, if all figures had been carried, would be 0,
Since we know what the result ought to be, we shall call it 0,
whereupon the weight of G2 is infinity, as is already known {con-
clusion 4°, Sec. 35, p. &5).
For 63
As an excrcise, the student should caleulate B’ , B, and B'"for
G* in like manner, obtaining OV
B’ = —1.808 . 10° e
B = 0865 10° ) AN (28)
B = 0203 .10 7

whereupen \/

1 A\
— of G = 10'%(3.6874-0.657 - 1.808+{1\2§2 -0.865—0.004 - 0,293}

.

= 2,300 - 1042 (29)
in agreement with conclusion 431{%’453(:’010[1 35 (p. 85).

Remark. The number ’@flﬁuxiliary constants B’, B", B",
ete., in Bq. 16 is equal $a,the number » of conditions, ie., the
number of F functipd®, This is also the number of Lagrange
multipliers (A), the’\atimber of equations in LEqs. 21, and the
order of the r c'{éﬂfcal matrix. In contrast, the number of &
funetions whops\ weights are wanted may be any whatever,
smaller or larger than the number of ¥ functions.

A\
\&

’§ W



CHAPTER VII

ADJUSTING SAMPLE FREQUENCIES TO N\

EXPECTED MARGINAL TOTALS A

37. Statement of the problem. In social and econonﬁ:c\sui'veys
that are earried out by sampling, it is somctimeg~ ﬂeahable to
adjust the sample frequencies, or to adjust ccrtam,ma;mp]o ratios, to
make them agree with certain corresponding tot&ls or ratios that
are known from other sources. This happeniye.g., in the work of
the Census: there is a complete count o*f\\céltain characteristics
for the individuals in the populatign, \but in consideration of
cfficicncy in time and cosls, datadelt” some clharacteristics are
collected on a sample basis in the £yt place, and the tabulations of
these sample data need to beladjusted to the complele count.
Moreover, many of the ergssitabulations or joint distributions of
population characteristigs that have been obtained on a complete
count are limited to &Sample when the data are processed in the
Washington officef an these cross-tabulations likewise need to be
adjusted. The ﬂa’\)le except in extremely fine classifications, is
entircly adequat.e for purposes of action (the only purpose of taking
any survey,in the first place). The data of the sample are usually
published, @8 estimates of what would have been obtained by
t&bulaimg the characteristics for the entire population instead of
onlgya sample thercof. This means that the sample is to be

. @djilsted to certain totals that are known from other sources (as &
_eomplete count).

The situation may be as shown in Fig. 14 in parallel tables for
the universe and for the sample. For the universe, the marginal
totals N;, and N ; arc known from the complete count, but not the
individual cell frequencies N;;; for the sample, however, tabula-
tion gives both the sample marginal totals n;. and n. ;, and the sam-
ple cell frequencies ny;,  After adjustment, the marginal totals of

eli]
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the (adjusted) sample and complete count will agree. The prob-
lem s to write in the cell frequencies of the universe, with the aid
of the sample, preserving the marginal totals that are fixed by
kmowledge of the universe. It is the ohject of this chapter to show
schemes for performing such adjustments.

UNIVERSE SAMPLE
N
js i L2
£\
t 2 5 I 2 \s
P=p (NN, Nigt Ny, TR O s,
=2 [Np) [Ny Nag| Np LTLT RS 25! N2
o N N : .=f'.\\? Mij ",
=1 [Nep (Neg Nrg| Ny, R L Mrs| Dy,
NN, N.j Ng N N n,on, Ny ng n
Njj unknown ) njj known
Marginol totols N. and Ql«l)known Marginal totals i ond N known
. N known X\ ; o known

Fre. 14 Showing; t.h(‘ system of notation for ihe cell frequencies nnd mar-
ginal totals of the“tniverse and the sample in the two-dimensional problem.

9\

88. Cell\frequencies and sampling errors. A statistical table
shows(the frequencies of occurrence of the various members of
Subélﬁi:sses within a population or universe, and is made up of cells,

0315 for each subclass. A two-dimensional universe is formed by
the crossing of two classifications, as depicted schematically in
Fig. 14. An example is contained in Table 1, page 107. The
title of the table ordinarily deseribes the universe. The box head-
ings over the columns define various mutually exclusive clasges
aceording to one system of classification, and the stub does likewise
for some other system of clussification. A member of the univgrse
will belong to one of the classes that are defined in the heading,
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and at the same time it will belong to one of the classes that are
defined in the stub; it is said fo be & member of the subelass that is
defined by the combination or cross-classification of two particular
classes deseribed respectively in heading and stub. That is to
say, & member of the universe must lie in one column or another,
and at the same time it must lie in one row or another; in the table,
it lies in the space common. to a particular column and a particular
row. This space is called a cell. The number written in the.gell
is & cell frequency and it shows how many members of this.pa,}ticular
gubclass were recorded in the enumeration of the umiyerse, by
sample or complete count. For instance, in Tablé/b, in the cell
designated by the combined ages 14 and 15 (showh‘}n the heading),
for the statc of New Hampshire (shown in théstub), is recorded
a sample frequency of 395. When the t-abtﬁ‘.mtion is prepared by
crossing three classifications, the result ig athree-dimensional table.
A threc-dimensional table is usuallgprinted as a sct of two-
dimensional tables, rather than asda single table. These single
two-dimensional tables all shogtthe same heading and stub, and
cach one represents the merabers of one class of the third classifi-
cation, as the heading wilk'show. A three-dimensional universe is
depicted schematically, g, 156, Similarly, one may have four-,
five-, or n-dimensioh\a,l ables. The sum obtained by adding the
frequencies of ancentire row or column is a marginal fotal or rim
total, although, it could well be called a class total.

When theydata for the table arise from sampling, the frequencies
(numberg)'obtained are smaller than if the coverage had been com-
plete,"For instance, if the sample is a so-called 5 percent sample,
the umbers in the table will be only about 3 percent of what

) ~they would have been had & complete count heen taken. It is
ot possible to perform the sampling in such a way that the sample
frequencies are exactly 5 percent of what would be obtained on
a complete count. If the sampling were so carried out, it would
be sufficient merely to multiply every cell frequeney by 20, and
every marginal total also by 20. (The number 20 is spoken
of as the sampling ratio, the reciprocal of 5 percent.) But be-
cause of sampling errors, and possibly also beeause of certain biases
that inevitably enter any survey, the sample frequencies will
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not be just 1/20th of the frequencies that would be shown by a
complete count. For the convenience of the user of & table, these
sample frequencies are sometimes adjusted to some or all of the

e T < e = T+ B N JURN Oy

~Ere/ 15, Bhowing the system of notstion for the cell frequencies and mar-
inal totals in the three-dimensional sample. The cell shown shaded is desig-
nated by the indices 4jk. The sample frequency falling in this cell is ni. The
corresponding adjusted deflated frequency is mij, and the adjusted inflated
frequency is Mi;;. Some of the tube and slice totals are indicated.

marginal fotals that happen to be known from other sources, as
by a complete count. This is a convenience to the user, because
after adjustment the identical marginal totals are found in tables
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having the same marginal specifications. Without adjustment,
the frequencies might be alike enough for purpeses of action, but
perhaps not close enough for identification.  The known marginal
totale that are used in an adjustment are spoken of as confrols,
or contrel totals.

The adjustment is more than a convenience to the user; (.
diminishes the sampling variance to some extent; the mozg, Con-
trols the smaller the sampling variance of the adjusted frequenues
(See the exercise at the end of Ch. V.} As a practical/matter,
however, this diminishing of thc sampling variance, ghould not be
overemphagized, because biases and other dlﬂicuhxs may have a
much greater cffect than the sampling crrors.

In the work of the Census not all sample, tables arc adjusted to
all the known marginal totals, Even wijh/kc short cuts that wﬂl
be described here, and which are more\ u\h described elsewhere,!*
it may be more important to publish {0 table at once, after merely
multiplying the sample results hyithe sampling ratio, rather than
to wait for adjustments to be nigde. One of the main advantages
of sampling is quick processi:n;g, and this is particularly important
for government planning(h times of economic and social stress, in
which the delay of onlg't éhe briefl time required for adjustment may
not be advizable, X\

39, Nature of(the adjustment. It will perhaps be realized by
now that tha problems to be taken up in this chapter are similar
to the geomdtric ones in the last two chapters -— similar in that
the conditions imposed on the adjusted values are rigorous, not
mvolvi‘ng adjustable parameters. The same procedure for enfore-
ing. “the least squares criterion will be found to give us an answer I
£ “\thds problem, as it did in the geometric problems. Here, however,
short cuts will be described, which will greatly diminish the amount
of computational labor and expense.

1'W. Edwards Deming and Frederick F. Stephan, “ On a least squared
adjustment of a sample frequency table when the expected marginal totals
are known,” Annals of Mathematical Siatistics, vol. XI, No. 4, December 1940
pp- 427-444.

? Frederick T. Stephan, An iterative method of adjusting sample fre-
quency tables when expected marginal totals are known,” Annals of Mathe-
matical Statistics, vol. XIII, No. 2, June 1942; pp. 166-178.



Cu. VII] ADJUSTING TO MARGINAL TOTALS 101

40. A closer look at the problem. In estimating any cell fre-
quency of the universe, such as Ny, three possibilities present them-
sclves: from the sample one may make an estimate from the
sampling ratio of the ith row alone, another from the sampling
ratio of the jth column alone, and still another from the over-gll
sampling ratio N/n. Specifically, the three estimates would be
niiNe /s, NN 3/n.g, and ni;N/n. These being simple multiplid
cations of the observed cell frequency n4; by three sampling ratiog;
viz., the sampling ratio N; /n;. in the sth row, N ;/n ; in,the\j‘th
column, and the over-all sampling ratio, N/n. Because ofsampling
errors, these three adjustments will not be identical exeept by
accident, and though any of them by itself may{bo” considered
accurate enough, still, if the whole r X s table ofuniverse cell fre-
quencies were estimated by any one of these thies adjustments, the
marginal totals would not come out equalZe the known values.
This chapter presents three rapid methods})f adjustment, which in
effeet combine all three of the cstimatés just mentioned, and at the
same time cnforce agreement with\the marginal totals. These
methods can be extended to varyang degrees of cross-tabulation in
thres dimensions. A\ '

Any method of adjustment must provide as its end product & set
of adjusted frequencieg-that will satisfy the controls provided by
the known marginakfotals. In any problem of adjustment where
the controls are intricate (many conditions), and where the adjust-
ments are cargi€d;sut by the hundreds and thousands, as they are
in the Census )it is necessary to have a method that is straight-
forward and-self-checking; this is particularly important in three-
way t-a%ﬂlations, where in one possible situation {Case VII in
rcfemiﬁce 1) the adjustment in one cell must be balanced by

,..{idiﬁs’tments in at least seven others. It turns out, fortunately,
that methods of the kind required in mass productioun can be
devised (Sees. 45, 46, 48, and 49).

41, The least squares requirement. By the method of least
squares one would enforce the controls {conditions), and at the
same time minimize the sum

S = Z (mg — ﬂf)z (1)

1
g

*



<

102 CONDITIONS WITHOUT PARAMETERS (BEc. 42]

n; stands for the observed frequency in the ¢th cell, and m; the ad-
justed sample frequency therein. n; is found in the sample survey,
and m; arises in the adjustment. Here the denominator n; is
taken as the reciprocal of the weight of the ¢th cell. The bigger
the frequency, the bigger the average sampling error {(absolute
error, not proportionate error), and accordingly the smaller thé\
weight. It might be argued that the weight should be takén
inversely proportional to m; rather than »;, but, if the sa-mpiin}g is
aceurate enough for the purpose intended, it will make little
difference which is used. Strictly, in random sainpling, the
reciprocal of the weight of n,; is np:sqq;, which isméarly equal to
74, where p and ¢ have their usual connpfdfions. But sinee
factors proportional to the weights may be substituted for them,
it is sufficient to use n;; as the reciprocal @fthe weight in cell 4,
since the values of g;; do not usually Va}y rmuch over the table.
In stratified sampling, the weights_ sierstill closely inversely pro-
portional to n;. ™

42. The two~-dimensional pm’nlem Suppose that the data on
two characteristies (e.g., agd and highest grade of school eom-
pleted) are obtained for ggoh member of & universe of N individu-
als, but thet tabulations of the complete data provide either

Case I, Only ‘oﬁe\set of marginal totals, Ny, Ns., -+, Nrj

or 2
Case II \Both sets of marginal totals, viz., N1, Na, **+, Nr.y
\: and Ny, Ng -+, N, (SeeFlg i4)

The nature of the tabulations is presumed such that it is not
fea‘s1ble (too expensive} to count the numbers N;; in the cells, a3
Would be done if one character were crossed with the other in
tabulation. Suppose, however, that in a sample of n individuals
selected in a random manner from the universe, the two characters
are crossed with each other, so that not only all the s 4+ » marginal
totals .y, - - -, n,. of the sa.mple are known, but also every one of
the numbers ry;(1 = 1,2, - ,r;i=1,2---,5). The problem
is to estimate the unknown frequencies N ¢ In the cells of the uni-
verse. This will be done by first finding the cah,ulatr‘d or adjusted
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sample {requencies m;; and then inflating them by the inverse
sampling ratio N/n.
For the least squares solution we seek those values of mi; that
minimize®
1
8 = 2 — (my; — ny)° @),
Hoig
wherein the m;; are subjected to conditions of Case I or CasedE
A\

Case I: One set of marginal totols known. Assume N 1, N2
N, tobeknown. Then we require the marginal adjustfents

sz=mi- t=1,2---, t"’}\\ (3)
¥

!

These r equations constitute r conditions gn'the adjusted m,;
corresponding to Eqgs. 3 of Chapter 1V, page 50. Assuming that
the adjusted values of the m;; have betu\ound, let each take on a
small variation §m;;; then the differentitls of Eqs. 2 and 3 show that

% 88 =2 mint—nﬁﬁm, =0 (one equation) 4)
17N

Tomy =0 LH=1,2---,¢r (requations) (5)
H &)
AN -
Multiply now Kq. B} by the arbitrary Lagrange multiplier — &;,
and add Egs. 4 and’5 to obtain
AS
th:@ — )\,;} dm;; = 0 {one equation) (68)
»; ni;
Q s
By tlie'same argument that was advanced in Section 27, page 54,
,,Qﬂl‘i'rflay now set each brace equal to zero. Ther La,gra.n‘ge mul-
tipliers are then no longer arbitrary, but each must satisfy the
resulting relation

My = iz (1 + X;’) (7)

% The sign X will denate summation over all possible cells, unless otherwise
noted. Y will denote summation over all values of 4, and similarly for an

T . .
inferior j or k. 'The dot in n.; will signify the result of summing the ny; over
all values of 7 in the jth column.

*
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The adjusted frequencics m;; can be computed at ence as soon as
the »; are found. To evaluate them onc may rowrite the con-
ditions (3) using the right-hand member of Eq. 7 for m;;, obtaining

mi, = n. {1+ N) . ®)

Another way to arrive at this same relation is to sum each membeps,
of Eg. 7 in the ¢th row.  However obtained, ), is now known, since
my, and n;, are known, and in fact g, 7 now reduces to \ \)
Mig = Mij 3T @
L ".

The adjustment is thus a simple proportionate onéby rows, the
cells in any one row all being raised or lowered\by the proportion-
ate adjustment in the row total. Case I thys.4mounts to r inde-
pendent cne-dimensional proportionate adjustments, one for each
row; and any one or all may be camtied out, as desired. This
result can be obtained by a simpleg approach but is presented in
this way for consisteney with Iater cases,

The minimized sum of squarcb may be computed directly, or
from the row totals by seemg “that

7
<

\{‘_ (mz - N4, )2 (10)

The term (1, — n?,,) /n, for the 7th row may be considered sepa-
rately, and used®s x* with s — 1 degrees of freedom, or all rows
may be comblhed into the minimized S as given in Eq. 10, and used
as x WItl\r 5 — 1) degrees of freedom.

Cqse,;ﬂ : Beoth sets of marginal totals known. Here the adjusted
cell :ﬁ‘équencies must satisfy not only conditions (3) but also

\3 Zmﬁ:m_j Jj=L1L2---,5—1 (11)
there being now a total of » + s — 1 conditions. In both cases.
= N (12)

mi=N; (13)

=is =
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In other words, m;, and m.; are the defiated marginal totals, i.e.,
N;. and N ; divided by the actual sampling ratio N/a. The m,,
and m,; are not independent, because
Ni+Na+- +N, = Ny +No+ 4N, =N (14)
It is for this reason that if ¢ runs through all » values in Eq. 3,
then j can run through orly s — 1 in Eq. 11. A similar equations
also exists for the marginal totals of the sample, namely, a\
o\
nA1+n-2+"'+n.s=n1.+n2.+"'+nr.=n'\ ’(15)
Solution of the two-dimensional Case II, In addi,tnif;p"t,o Eq. 5
we now have also X e \ e
Toms=0 =12 021 (16)

which comes by differentiating Egs. 11. Ayaddition of Eqs. 4, 5,
and 16, after muitiplying Eq. 5i by —X; and Eq. 167 by —p;, we
obtain PN

Z{MT’}!;';Ff}fsWi:O (17)

i W\
Equating each brace to zerb; o‘a’s before, we find that
?fb\z‘} = n {1+ M+ p5) (18)

wherein g, is to be@aﬁnted 0. The adjustment is now no longer
proportionate by h}ws, but invelves every cell.

To evaluate,the Lagrange multipliers in Eq. 18 we may sum the
two members“downward and across in Fig. 14 and obtain the
r+s —"\Ih\ﬁorma,l equations

n‘-&;q.’ z Rigit; = Mg, — Ry, =12, 7

A\

: . (19)
\).'_‘ RihiF g =mi—n; j=1,2+,8—1
NS

N/ These ean be reduced for numerical computation. The top
row solved for A; gives
M= = (s, — E ng) — 1 (20)
g, B
whereupon by substitution into the bottom row of Egs. 19 we
arrive at the 8 — 1 normal equations,
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i1 He e tig-l = 1
Ri1tiig Tiithe Hi1fii,a—1 LR L
py- DA gt gt o, g
T M M. i . ? 7.
Niafip P00k, sm 1 Thegimi,
np— D2 _p i, ph
£ i, [ T,

i [

2
Rpt— E Mg, 5— 170,21 m.a—l_z:\fw"_lml
2 ni. AT
oS
N\ >
Because of symmetry in the coefficients, those belew the diagonel
are not shown, indeed, in the systematic,.eomputation already
shown in Section 33 (p. 73), they are notlsed. The O in the
bottom row is appended for the comphtafion of the minimized &S,
H desired. The number of Lagrang«gs'rriultipliers to be solved for
directly is s ~ 1, and the remajning ones come by substitution
into Eq. 20, x, being counted g0
A simple procedure for calétlating the coefficients in the normal
equations (21) is to set 4p. & preparatory table by dividing each
ng; in the ith row by afms.; also to write down m;./4/n;, for that
row, for use on the &\ht-hand side of the normal equations {com-
pare Tables 1,gnd 2). In machine calculation the constant
divisor v/n;. would be left on the keyboard until the entire ith row
i divided;.,;g}‘," if reciprocal multiplication is preferred, the multi-
plier 1/3(ws. would be left on the keyboard. From this prepara-
tory table, the cumulation of squares and cross-products inthe
vertioal gives the required summations for the coefficients. _The
“sim check would be applied in the usual manner. .
V' 43. A numerical example of the two-dimensional Case JI. The
fact is that in practice one need not bother ahout forming and solv-
ing the normal equations because they will be displaced by 2
simplifying iterative procedure, to be explained in a later section.
For illustration, however, we may do an example both ways, first
‘using the normal equations and the adjustment. (i8), later on
accomplishing the same results by the quicker method.
We may start with the unitalicized numbers in the 4 X 6 array
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of Table 1, assuming these to be the sampling frequencies ny; to be
adjusted. Actually, they were obtained by deflating 1/20th (for
a supposed 5 percent sample) the New England age X state table
on p. 1108 of vol. 2 of the Fifteenth Census of the 1. 5., 1930, then
varying the deflated values by chance with Tippett’s numbers to

TABLE 1 Q!

A TABLE OF BAMPLE FREQUENCIES, A 5 PERCENT BAMPLE OF NATI\'E\“?HITE
PERSONS OF NATIVE WHITE PARENTAGE ATTENDING SCHOOL, HY AGEBY STATE:
New Excrawp, 1930 g W

(The adjusted frequency my in each cell 45 shown z!al?-cweé ﬂ;&'-' below
the corvesponding sample frequency ni.!)'\ v

Age 7 t0 13 14 & 15{6.&"17}18 10 20
i= 1 200 3 4 i,
p;= {0.0118 {00348 (0.0012| 0 m;.
Btate i A o\ V
Maine 1| —0.0146 ||, 8823 | 781 | 587 | a13 | cova

Jdasz3 | 781 | ss0 | s0s || sese
New Hampshire] 2 | —0,0003 || 1570 | 305 | 251 | 155 | 2371

RA 1588 | 401 | 261 | 155 || 2895

Vormont 36 00232 || 1553 | 419 | 264 | 116 || 2352
N\ 1608 | 486 | 2v0 | 119 || g482
Massachusetis'd 74 | —0.0162 {| 10538 | 2455 | 1706 | 1180 || 15859
\" 10402 | 2452 | 1680 | 1141 | 15766

Rhod\IéEﬁd 5! —0.0230 | 1681 353 | 171 | 154 | 2350
L\ 1662 | 50 | 167 150 £330

Genhecticut | 6 | —0.0034 | 3882 | 857 | 544 | 330 | 5622

3915 | 867 548 338 5668

.3 22847 | 5260 | 3493 | 2237 33337
m,§ 28877 | 5885 | 3462 | 28183 || 33837

The adjusted frequencies my; (italicized) are rounded off, hence when
summed may occasionally dissgree & unit or so with the expected marginal
totals (also itslicized). The latter arise by defiation from the universe rather
than by direct addition of the mi;. A; and p; are found in the solution of
Eqgs. 20 and 21.
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get fictitious sampling frequencies n;;. The italicized entries in
Table 1 represent the final (adjusted) frequencics my;, and it is
these that we now set out to get. We start off with the sampling
frequencies n,; and the known marginal totals .1, M.g, ete., where
m;. = Nin/N, m; = Nn/N, as in Eqs. 12 and 13. The
Lagrange multipliers shown along the left-hand and top bordérs
arise in the calculations now to be undertaken, A
'\ ¢
TABLE 2 N\
EACH 8AMPLE FREQUENCY IN TABLE 1 DIVIDED By THE COFIFEfSPgiQDING e

N
This operation would ordinarily be done o 'row"ag\a, time.

s \\ mi /v ||  Sum
1 2 3 Y

i=1 4080 | 1095 | ven M oamt || 232 (| 14494
2 || 8226 | s | &85 | 318 | s10 || 978

3 | s2.02 s.6¢ tN%.24 | 230 | s0.15 | os.e4

4 83.68 | 19.50°| 13.55 | 9.21 | 125.19 || 251.12

5 34.61 ‘\\7'_'27 8.52 | 3.17 | 47.97 || 96.54

6 SLEP 1143 | 7.26 4.52 | 75.51 | 150.49
Sum \2:&':?1 65.60 | 42.59 | 26.78 |420.33 | 830.60

\..

Tab}’e\2 1s the preparatory table, advised at the close of the last
sgetion. It is derived from Table 1 by dividing the sth row of
\”Qa-l’hple frequencies by v/n;. For example, the entry 8.64 in the
cell # = 3, § = 2 comes by dividing 419 by V2352, 419 being the
entry in the cell of the same indices in Table 1, and 2352 being the
swn of the third row. The sums at the bottom and right-hand side
are for checking the formation of the normal cquations. The
cumulations of squares and cross-products along the vertical give
the summations requirad for the normal equations (Egs. 21),

which now appear numerieally as Eqs. 22.
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Row 1 B2 = 1
I 7413 —3549 —2354 3197 x 102
2 4441 —544 2356 (22)
3 3129 —3J222
4 0

Performing the solution by any favorite procedure one wﬂl obtmn

pr= 001182 4y = 001490  pg = 000119 N (23)
whereupon by substitution into Eq. 20 comes '\\
A = —0.0146 A = —0.0182
Ae = —0.0008  As = —0:0230 (24)
A= 400238 2= "—\9‘0034

The next step is to compute the»m,, by Fq. 18, Table 1 is now
bordered with the Lagrange multlphers for & convenient arrange-
ment of the factors required, @nd the caleulation is completed. It
will be noted that, for cxample,

Mgy = 41§€I - 0.0234 + 0.0149) = 435 (25)

The my; thus calculated are shown ifalicized in Table 1. The
marginal totals, found by adding the m; just caleulated, do not
agree cxagtly/everywhere with the expected totals, because of
I‘oundIKg off to integers: the errors of closure, however, are slight,
and 1t}s a simple matter to raise or lower some of the larger cells
by Aunit or two to force exact satisfaction of the conditions, if this
sl‘i Heswed {Compare with the triangle problem on p. 84.)

/ 44, The three-dimensional problem, Here the N cards of the
universe are sorted and counted for one and perhaps a second and
third characteristic, and possibly erossed by pairs in various
combinations (Cases I-VII). The sample of n, however, is crossed
by all three characteristics, which is to say that the cell frequencies
#ij, are all known (refer to Fig. 16). As before, the adjusted fre-
quencies are required.,

A
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Case I: One set of slice tolals known. Assume the slice totals

Ny.,Ns.,+++, N, tobeknown; the conditions are then
%mi;‘k=ms” =N,-__%: 1=12 .- p (26)
being r in number. The summation to be minimized here is N\
§ = Lo~ nn) Len
sk 2N\

being similar to that in Eq. 2, cxcept that now tihc’ré. are three
indices to be summed over instead of two. Follow\fi(ig a proeedure

similar to that used before, we differentiate §s)*26 and 27 and
introduce the r Lagrange multipliers A;.. with\Eq. 26. The steps
are identical with those of the two-dimefsional Case I, and the
result is at once o\

% 3
NN

Mijp = fige(l + X)) = ngg ni (28)

* Teon

This adjustment, like that sh}éﬁ;ﬁ by Eq. 9, is a simple proportion-
ate one, but this time by/slices rather than by columns. All cell

frequencies having the-game 7 index are raised or lowered in the
same proportion. L\ ™

Case I1: Tuwo §ebs of slice totals known. Here, in addition to the
slice totals 0Cade I we know also

\:\ Ni-s N‘2.; Tty JN..&.
whenge'\\afise the s — 1 additional conditions

O T =mi =Ny j=1,2--5—1 (29
\ ik N

Using the Lagrange multipliers X ;, here, and ;.. with Eq. 26 a8
before, we find that

Mg = N (l -k X + X j) (30)

in which X ,. is to be counted zero. ‘This adjustment is proportion-
ate by tubes, the ratio mg;/n: being constant along the ¢jth tube
and in fact equal to Mij./ni;., independent of k. Unfortunately
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we do not here know the face totals ™5, and are unable to make use
of the proporticnality as we shall in Case IV,

To solve for the r + s — 1 Lagrange multipliers we sum the
members of Eq. 30 over § and then over s and arrive at the normal
equations

it RN =mg, — g, §=1, 2,7 .

i 2%
E_ TRVINE B W W Mg — Mg, J=1,2 ., 8=1p f3h
1) % ~

These can be reduced to s — 1 equations in precisely tvtfe same way
that Figs. 19 were reduced, but, because of the gredt advantage of
the iterative process to come further on, we shall'hot pursue the
reduction here. RN

Case I1T: All three sets of slice totals knuiv; All slice totals
NoisNan - 4N
Ni., NagSh A,
Noaon N

now being known, in aQﬁition to conditions (26) and (29) we
require here e

T myhs mog = N..k%, k=1,2-t—1 (32)
YA\
which make};a.'total ofr4+- -1+ ¢Et—VDorr+sett-2
conditi@@}"The same kind of manipulation as used heretofore
gives N\
R\ N Mijn = nie(l 4 M+ A+ M) {33)
“With Ao and A ; to be counted zero. The adjustment is no longer
broportionate by slices or tubes, but involves every cell. In
practive, once the normal equations are solved and t.kfe Lagrange
multipliers worked out, one proceeds very much as in the two-
dimensional Case II: for each of the f slices, corresponding to tlfle
t values of %, there will be a two-dimensional adjustment, the 1 in

Eq. 18 being replaced now by 1 + X4 o i
The normal equations for the Lagrange multipliers can be foun
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by performing double summations en Eq. 33. The result is

T Z,: TR E T ph g = M. — T,
i=1,2 1

§ LTS CIRE R N W Ekn.jkh..k = ., — N4
i=1,2-s—1

Z‘_ nixM.. + ? Nogphg. b Rogh g =M — Mg ) \\\
E=1,2--,t—1 N\

\/
79N
M

r 341\

N ¢

If these calculations were to be carried ouf, one wo@di’t:-imp]ﬁ}f the
computation by solving the top row for A;.., getting
1 w\J

A, = Z fm;,, — ;2 g N7 i%ﬂ\‘khk} —-1 {35)
and then substituting this info the {njddle and last rows of Eqgs. 34
to get a reduced set of s 4 ¢ — 2 ngrmial equations for the Lagrange
multipliers A;. and N_3, the numeérical valucs of which when set
back into Eq. 35 give the A; " In all the summations of Egs. 34
and 35, A, and A, wouldbe counted zero. But here again, the
iterative process to be gkplained later will displace the use of normal
equations, so actua}l}\}ve are not interested in reducing them.

CaseIV: O??Ze\‘sétf)f face totals known. Tt may be that the rs face
totals 2O !
\‘ Nllq le.; Y N!:J‘d Tty Nrs.

are kn\ﬁf'n from crossing the ¢ and j characters in the universe.
The-eonditions are then
~O)

O” = N B2
%mwk Myj. !.J'-N j= 1, 2’ i s ( )

The adjustment here turns out to be
e = Ngp(l 4 Ngl) 37

but by summing both sides over the index k to evaluate Xy, it i8
geen that

Mz, = 133, (1 + Ay4) (38)
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whence

Mg,

Ml = Nijk —— (39
1.

This adjustment is thus proportionate by tubes, like that in Eq. 30,

though here the factor m;;, /n;;. is known and Eq. 39 can be applied »

at once.

Case Vi One set of face totals, and one set of slice totals knbion)
Sometimes, in addition to the rs face totals of Case IV, the klice

totals N
N..I)N..ﬂy""N,.t 4 :"
AN
will also be known, in which circumstances the eonditions (36) are
to be accompanied by N\
L&

T
—

Tmgpr=my =N, 12,0t -1 (40)
i N O

The same procedure as previously;ziﬁplied yields now
Mgy = ﬂsi;gﬁi“f— A+ Mk} (41)
with A_; to be counted zare,® Summations performed over &, and
then over ¢ and 7 toggt}\mi'; give the normal equations
Bei Mg, + 2 agh g = Mg, — Mg,
o Piphi. + NogA e = Mg — Nk
I

The numb&"bf equations is s -+ 4 — 1, since A, does not exist.
As bef«m%, 8 simplification can be effected by solving the top row
for 3&}{ *and making a substitution into the lower one, but, because
Of\the great advantage of the iterative process to be seen further
\OD; we shall not earry out the reduction. )

Before going on it might be noted that although this case is three-
dimensional, it reduces to the two-dimensional Case II if one
considers that 47, is one index running through the values 11, .12,
*e 21, 22, -.- rs, and that .k is a second index_ru.nm'ng
through the values 1, 2, -+ -, &, This can be seen by the similarity

between Eqs. 42 and 19,
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Case VI: Two sets of face totals known, If in addition to the
face fotals of Case IV, the face totals

NauyNag, - N

are also known from further crossing the j and & characters in the
universe, we shall require

mp g dT s S
Eimijk._mljk_N'JkN’ k=11 2!13_11 o\\(4\3)
in addition to the conditions (36). In place of Eq. 39 of Case TV
we now find that AN\
e = el 4+ M. + M) D (44)

in which A.j is to be counted zero for all 7. Nosimple relation
such as Xg. 39 is possible here, because tl\e widjustment is not
proportionate by tubes; the Lagrange multipliers must be evalu-
ated. This can be accomplished by ‘sijﬁming the members of
Eq. 44 over % and 7 in turn, resulting in.the normal equations

o a
s hij. + 2 RiEh RS Mg — g

PN (45)
2 nigehig, + NuEge = Mage — Nk
- N

Since ).;; does not existfarany values of j, the number of equations
is rs st — 1) = \&-‘I— t — 1), They break up at once info
s sets each of r 4%, — 1 equations, one set for every j value, In
fact, the probleean be considered as s sets of the two-dimensional
Case II. Anybne value of § gives a slice, which can be looked
upon as fulfilling the specifications of the two-dimensional Case IL.
Each .s\e%a'f normal equations can be reduced in the same manner
thasHigs. 19 were reduced.

m:()‘aée VII: All three seis of face totals known.,  All totals now being

\known, we require

. o i=1,2 1
Migs = Mg, = N, A 36)
T = i =Noyp 12,0 K
n j=1,2- 45 }
i = mgp =N sl g
Zmge=ma =Nagp o _{g.i-1]
F=1,2,--,7—1
X Mg = Mmip = N 0 P } 46)
i * BN ho12 e to1]
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The adjusting relation is
Mo = Rign(l + Mg, 4+ Mg + My 47

in which A.;; is to be counted zero for any j, M.y for any k, and
A for any 4. The normal equations for the Lagrange mult.xp].lem
are

N

nijAij, + ? Nijeh.gp + 2:; NijEhiy = Mg, — Ny,
}: Aijehiy. + Rogehgy + E Rijphie = Mjz — B 3; ( (;85
Z ﬂuk)\u + z Tijih gkt Piphig = Mmiz — nt'k

being rs+rf+st—r—s—1t4+1 in number They can be
reduced in the same way that previous normal’ equations have
been reduced; but here again, the iterative/Process will render the
use of normal equations unnecessary, ex%pt for theoretical pur-
poses, e.g., justification of the iterative Drocess.

45. A simplified procedure — 1terat1ve proportions, The num-
ber of Lagrange multipliers in a.ny ‘Problem is equal to the number
of conditions imposed on the,adjustment (Sec. 27). Here the
conditions have appeared~m sets, depending on which marginal
totals are involved. By\a comparison of Egs, 9 and 28 on the one
hand, with Eqs. 18, 30, 33, 41, 44, and 47 on the other, we see that
wherever there was\)nly one set of marginal totals involved we
eame out with & simple proportionate adjustment, but that in all
other cases it(Was not so; the Lagrange multipliers involved were
unfortunat@l} related to one another through normal equa.twns

We néed’a simplification. It is a fact that as a first approxlma.-
tion, ’ahe adjustments may all be considered proportionate, in
either the horizontal or the vertical. We shall be able to write
{qp¥n an expression for the error in this approximation, and shall
be able to reduce it sufficiently by a suecession of proportionate
adjustments.

Take the two-dimensional Case II for an example. In Eq. 20
one may recognize (1/n;.) Z niiu; 88 a weighted average of u; 1_'.01'

? .
the /th row. There will be a weighted average of #; for. the first
row, another for the second, ete., one for each value of ¢; conse-
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quently one may appropriately speak of the ¢th average of g
writing it ¢-av ;. Substituting from Eq. 20 into 18 one then sees
the adjustment (18) appear as

g, \
Mij = Nyj (;1‘“ + uj — t-av f-‘:’) (49)

If, on the other hand, x; had been eliminated from LEgs. 19, instead
of ;, the regult would have been O\
m.g . O

My = Ny ;— 4+ A — jav g G o (50)
.J' 4 o‘.

<

From either Eq. 49 or 50 1t is clear why the adjust&fteht (18) is not
proportionate by rows or columns, and why CageNY does not break
up into ¢ or s sets of Case I: the reason is t;bta:t #; in any cell is not
necessarily equal to the average p; for thatfedw, nor is \; in any cell
necessarily equal to the average A, for thatolumn.  If nevertheless
one were to make the simple propon’gipﬁ'ate adjustment
Mo g (51)
g,
along the horizontel in_ t,he ?,th row, the horizontal conditions (3)
will be enforced but o{the vertical ones (11); 1. €. it will be found
that my' = m;, but “that usually not all m i =mj Thls is
because Eq. 51 éffects only a partial adjustment, each m;;’ being
in error thro gh the disparity between the u; proper to the jth
column, am;l the average of all the y; for the {th row, as seen in
Eq. 49, 'iThls error-can then be diminished by turning the process
around,and subjecting these m,;’ to a proportionate adjustment in
j;be vertical according to the equation

\ 3

Mo r T : (52)
iz Higg m.,-' :
which may be considered an application of Eq. 50 wherein the dis-
parity between any A; and the average A; for the jth column has
been neglected. It is the vertical conditions that will now be
found satisfied, but perhaps not all of the horizontal ones, because
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some of the row totals may have been disturbed. The cycle
initiated by Eq. 51 is therefore repeated, and the process js €on-
tinued until the table reproduces itself and becomes rigid with the
satisfaction of all the conditions, both horizonta] and vertical,
The final results theoretically do not coincide with the least squares
solution, but in practice they usualiy do, closely enough.

Usually two cycles suffice. In practice the work proceeds
rapidly, requiring only about one-seventh as much time as setting’)
up the normal equations and solving them, The Tables 3-5%how
the various stages of the work when the method of itergti;’?e pro-
portions is applied to the sample frequencies of Table " Ti will
be noticed that the results of the third a,pproximatic}n\ {Table 5)
are finzl, since if the process were continued, thetable would only
reproduce itself, N

TABLE 3 .\

TOE METHOD OF ITERATIVE PROPORTIONS AJ{PL}E}J TO THE DATA QF TABLR 1
{FIRST STA,(’}:E)
A proportionate adjustment by rogus',‘i!;g} Eq. 51. Note that m)” = my,
but thatsm )" < m .

j=1 2N 3 4 m | m,

i=1 3608 | 778 555 312 || 263 | 5252

2 1586 (") 399 254 157 2396 2306

3 160871 433 273 120 2432 2432

4 16476 2441 1696 1153 |l 15766 | 15768

5 || 660 349 169 152 2330 2330

6 H\.8010 863 548 341 5662 5662
E—

m A8 22846 5263 3495 2235 || 33839
Ly 29877 5285 3462 2213 33837
\ 3

46. Iterative proportions in three dimensions. The same
Process can be extended to three or more dimensions with an even
greater relative saving in time. To see how the method of itera-
tive proportions applics in one of the three-dimensional cases, we
nay go back to the three-dimensional Case III. By the substi-
tution afforded through Eq. 35 the adjusting Eq. 33 may be put
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A CONTINUATION OF THE PROCESS INITIATED IN TABLE 3

TABLE 4

(SECOND STAGE}

[Brc. 46]

The figures in Table § are now adfusted proportionately by columns according to

Eq. 68. The vertical totals m '’

and m 5 now are equal, but the agreement of the
horizontal tolals accomplished in Table 3 has been slightly disturbed.

i=1 2 3 4 mi" A

i=1 3613 781 550 309 5253 | (5252

2 1688 401 252 155 2306, ), + 2305

3 1608 435 270 118 2430\ |} 2432

4 10490 2451 1680 1142 || 18763 | 15766

5 1662 350 167 151 HNC(9330 2330

8 3015 867 543 338\ 5663 5662
my’ || 22876 5985 3462 '29\1&\ 33837

m; 20877 5285 3462 132213 33837

X
&Y
CR Y
NN
™

. TABLE 5

Tug*@&cm COMMENCED AGAIN

&

{remED aTAGE)

The figures of Table 4 are subjected to o proportionate adjustment by rows, accord-

ing to Ey 51. mm:e these results turn owd fo be almost a reproduction of
Toblz 4, bt 1% both horizontal and vertical conditions safisfied, they are con-
s'zderc\ al, The agreement with the myy in Table 1 should be noled.
, \
) f\ i=1 ) 3 4 m" ms,
~D=1 3612 781 550 309 5252 5252
9, 2 1587 401 252 155 2395 2396
3 1608 435 270 119 2432 2432
4 10492 2451 1680 1142 15785 15766
5 1662 350 167 151 2330 2350
6 3014 867 543 238 5662 5662
my 22875 5285 3462 2214 33836
m,; 22877 5285 3462 2218 33837
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into the form
my.. . .
Wik = Nk (n— + A A Mg — dav Ay — dav 7\..:;) (53)
Equally well it could have been written

Majh = Nijk (—“J + Ai 4+ g — jav h,, — jav 7\..3) (54) A
n.j,

N

or A

M. N
Mije = MNijx (—a T i, + Ay — Eav A, — kav R{) ~{55)

Any of these three equations shows why the adjustment(33) is not
proportional by slices, and why this case does netzbréak up into 7
or s or ¢ sets of the three dimensional Case 1. sAs'a first approxi-
mation it does, ag is now clear from these t fe?equations, and by
making succesgive proportionate adjust;néfnts we may thus arrive
at the final values. To go about the dek’ one could first calculate
the values of oY

*

ms
'mrwk N ?lm: ﬂ_' _ (56)
then m\
\ m 4.
\\mwk = mig' —5 (67)
m.j
followed by € ~
a\) M.k
\\ migp | = ma’ p— (58)

These, t?lree succeasive adjustments would constitute a cycle,
whieh™ would then be repeated in whole or in part uniil the table
%wmes rigid with the satisfaction of all three sets of conditions.
47. Simplification when only one cell requires adjustment, On
oceasions it happens in sampling that one is especially interested
in one particular cell of the universe, and would like to have a
result for it in advance before the other cells are adjusted. Some-
times it even happens that the others individually are of no particu-
lar coneern. In such circumstances one merely places the cell of



120 CONDITIONS WITHOUT PARAMITELRS [3BC, 47]

interest in one corner of the table by an appropriate interchange of
rows and columnsg, and then compresses the rest of the table into
the cells adjacent to it. In the two-dimensional Case IT one would
thus work with a2 X 2 table, one corner cell being the one of special
interest, the other three being the result of compression. The
marginal totals of the row and column belonging to the ccll of.
interest are unaffceted. For illustration we may suppose thdt
from the sample shown in Table 1 we roquire only ms;. We {han
gtart with the 2 X 2 Table 6, which is derived from Table)1 by
compression, Commencing mth Table 6, cne might ﬂ»lat adjust
by rows according to Eq. 51, then by columns by Eq 52. One
cycle of iterative proportions is sufficient, as is see}a in Table 7,
and the value 3915 found for me is in good derdement with its
value shown in Tables 1 and 5. The schéme of compression
provides a quick method of getting out an.Add¥ance adjustment for
a cell of special interest, and the result’sgvobtained will ordinarily
be in good agreement with what comab later when and if all the
cells are adjusted.

In the three-dimensional Casc:a II III, V, VI, and VII, one
compresses the original table to'a 2 X 2 X 2 table, and then uses
the method of iterative proportions. (The other cases do not
require consideration ﬁl{:e they are proportionate adjustments
wherein one is already \at liberty to adjust as few or as many cells
as he likes w1tho,1\:1t, #ltering the equations or the routine,) The

o

\M TABLE 6
DERIVED..!?:I)E)M TABLE 1 BY COMPRESSION, THE CELL i = 6, § = I, REQUIRING
e ADJUSTMENT
A
") i=1 i=124 . m,
i=1-5 18965 9250 28218 28175
i=6 3882 1740 5622 5662
g 22847 10990 33837
m g 22877 10960 33837
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same procedure can be extended to the adjustment of two cells, the
only medification being that in two dimensions we shall com};ress
to 82X 3ora3 X3 table, depending on whether the two cells
do or do not lie in the same row or column. In three dimensions
we compress t0 8 2 X2 X3, ora2X3X3, 0oradx3x3
table; the first if the two cells lie in the same 7, §, or k tube, .t}{e\
second if they lie in the same slice but not in the same tube, the

third if they are in separate slices. R \J)
TABLE 7 N
A PROFORTIGNATE ADJUSTMENT OF TABLH &\ )
Rows adjusted by Eq. 51 Columns aﬁ}\u;ted by Eq. 52
18938 9237 28157 1?9\62: 9213 28175
3010 1752 5662 ¢ '\'57315 1747 5662
29848 | 10986 | 33837 M ozs7r | 10060 || 33837

~

Conclusion ms = 3915

48, The Stephan method? An iterative procedure devised by
Stephan? has the advadtage of being in theoretical agreement with
the least squares golution. It is moreover self-checking and self-
correcting, and :yehuu‘es the writing of only a few figures, Only
one table is regired, since the factors required in the eomputations
are appendeth bélow and to the right, and all the figures needed can
be writ{s@}ﬁto this one table (see Table 8). 'The method will
convexge 'to the least squares solution even when some cells are
vapaﬁ\t or contain huge sampling errors. This is possible because
thernethod may be used under any desired system of weighting.

"\ Directions follow for carrying out the computations of the
N\ 'Stepha,n method in two dimensions when the weight of any ad-
justed frequency is assumed to be inversely proportional to the
corresponding sample frequency, as in the development of the
normal equations {cf. Sec. 41). The numerical illustrations refer

? Frederick F. Stephan, “ An iterative method of adjusting sample frequel?cy
tables when expected marginal totals are known,” Annals of Mathematical
Statistics, vol. XIII, No. 2, June 1942: pp. 166-178.



122 CONDITIONS WITHOUT PARAMETERS  [Smc. 48]

to Table 8 of this chapter, which is derived from the same sample
frequencies as those in Table 1.

cyoLe 1

1. Compute the factors pi{l) equal to me/2n;, Enter
each factor in the proper row, one below the other, in the
eolumn headed p;{1). (For instance, p,(1) = 2395/2 X 2371 N\
= 0.50506, and is entered opposite the second row.) A

2. Multiply each. sample frequency ny; in column j by thew)
corresponding factor pi(1). These products are not negded
individually; they are to be accumulated in the productaagister
of the machine until the vertieal total for the column is ob-
tained. (In column 4, this vertical total is 338 % 0.45791
+ 155 % 0.50506 4+ 116 X G.51701 + 1160 XM A9707 + 154
X 0.49385 + 339 X 0.50356 = 1117.46423.) \Fhis total is not
to be written down, but is to be transferredto-the kevboard for
the subtraction ealled for in the next step *

3. Subtract this accumulated totgl$rém the eorresponding
deflated universe column fotal m. ;.. Then divide this difference
by the corresponding sample eolytnn total n.; to et 1he factor
gi(1). (For instance, {mg%= X nu X pi(1)}/n.e = {2213
— 111746423} /2237 = 048973 = gu(1), This iz the only
Beure written down from stébs 2 and 3.) Do steps 2 and 3 for
every column. \ )

\J- cycLE 2

L™
. 4. Multiply ea\ch sample frequency in row i by its correspond-
ing factor g#(});" These products are not needed individually;
they areo-be accumulated in the product register of the
machipe.bntil the horizontal total for the row is obtained. (In
) mwzzftﬂ_ll_s horizontal total is 1570 X 0.50134 + 395 X 0.50463
i j— 1 X 049089 4 155 X 0.48973 = 1185.53979.) This total
wI3wot trbe written down, but is to be transferred to the key- - -
N vboard for the subtraction called for in the next step.

O™ 5. Bubtract. this accumulated total from the. corresponding

. deflated universe row total m;.. ' Then divide this difference by
;h‘("zjcme(f’irgond}ng MPIF row total n; to get the factor
pil2). *or Instance, {ms, ~— 3 fa; X (1)} fna. = {2305
— 1185.53979] /2371 = 0.51011 = pg(zj)) ?DO steps 4 and 5
for every row, '

6. Repeat step 2, using the factors p
A y i(2).  (Incolumn 4,
the vertical total is 313 X 0.40580 + 155 X 0.51011 +- 116

. X0.53384 1 1160 X 0.49426 - 154 05
= 1116.44870.) + 154 X 0.48740 -4- 339 X 0.506



[Cr. VI1I] ADJUSTING TO MARGINAL TOTALS

7. Repeat step 3 to get the factors g;(2). (For instance,
fm.e = Zmu X ps@}/na = {2213 = 111644870} /2237
= 049019 == ¢.(2).)

CYCLE 3

The process can be continued, that is, steps 5 to 7 ean be
repeated again and again. In practice, cycle 3 is often the
last one.

THE FINAL STEFP, THE ADJUSTED TABLE

7"\

The process will be stopped when another cycle would merely
result in & repetition of the same factors. When thisdstage is
reached, the factor p¢ + ¢; iz formed and mu.ltiplie@ by the
corresponding sample frequeney n.;, and the produetis written
in eell 4j beneath the corresponding samplaMrequency ni;.
(For instanee, for the cell 7 = 3, j = 2, the adjusted sample
frequency i1s 410(0.53385 4 0.50431) = 435Cand this is written
heneath the sample frequency 419.) x\

In the illustration, there was no glegd of going beyond the
second cycle, since, as will he obgerved, the p and ¢ factors
obtained in the third eycle are practically identical with those
obtained in the sccond. But AFeourse, one could not perceive
this without going throughXhe third sycle.

It was mentioned egrlier that the process is self-correcting,
If a mistake is mage womewhere in the computations, the
process will eonverge faster or slower, depending on the magni-
tude and directi&i { the mistake. In consequence, fewer or
more cyeles will be required before the factors repeat themselves.
The end redult will nevertheless be the same as if no mistake
had bogr\ghade. The computer mey therefore assume that
when.{lig"factors repeat, his work is correct, and he is ready

for final step.
,‘\tge nal step

1 , Since the Stephan method gives the least squares solution, the

7\ Ttalicized figures in Table 8 (p. 124} are identical, except for round-

N
%
\ }

* jug errors, with the results in Table 1 (p. 107), which were obtained

by the use of norreal cquations. The least squares results in both
Tables 1 and 8 are in close agrecment with those yielded by the
method of iterative preportions in Table § (p. 118), and with the
rosults to be obtained by the Bruyére method (next section) in
Table 10 (p. 126).

The choico between the different short-cuts (iterative proportions,
Btephan, snd Bruyére) may reasonably lie in personsl preference,
though the Stephan method has certain theorctical and practical

123

N
oS\
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advantages, as mentioned above, and in some situations these
welgh heavily in its favor.

The Btephan method has been extended in the Census to three
dimensions; for genersl instructions, see the reference to Btephan
in footnote 2 on page 121,

TABLE 8 N
THE SIEPHAN ADJUSTMENT APFLIED TO THE EXAMPLE SHOWN IN TABLE 1
KAYN
ng ’

i=1l 2 | 3 | 4 p() | 2@ | 2@ P

T

3623 781 | 567 | 313 || 5274|0.40791)0.4953008.40580
3618 781 | 550 | s09 | sesz

1570 396 251 155 2371 ‘50506\.51011 51011
1588 401 2a1 155 2395 7>

b

F&?
1553 419 | 264 | 116 2352,:51301 .53384| 53385
1608| 485 | 271 119 || 24380

105382456 (1706 | 1160 ||t5830| .49707| 40426 49426
104921 2451 | 1881 | 1143:YP6760

16811 353 | 171 | 15% || 2350 49385 48740| 48730
1662 850 | 167 A rsr || asso

3882 857 %‘4. 330 | 56220 50356| 50600 50699
8914 88Y \5 3 588 AE62

n.; | 22847) 62607 3408 2237 |lass3r
m, 228??11\63285 8462 2213 33837

7N\
¢;(1) |0:501340.50453(0.490990.48973
S
(23, %60137| 50431| .40084] .49010
~ga(3) | 50137| .50431] 49084| 49010
\

H
1

The sdjusted frequencies my; {italicized) are rounded off, hence when
summed may occasionally disagree a unit or so with the expected marginal

totels (also italicized). The latier arise by deflation from the universe rather
than by direct addifion of the my,

49. The Bruyére method. This method is closely related to the
other two short-cuts, and may be deseribed as a precipitous



[Cr. VII] ADJUSTING TO MARGINAL TOTALS 125

forcing at the end of the first half-cycle. It was shown to me by
Dr. Paul T. Bruyére, who had devised it some years earlier when
he encountered the problem of adjusting sample frequencies in
connexion with some surveys in medical research. It does not
give & least squares solution, but it is good enough, and has the
advantage of being the most rapid of all methods here explained{\

1. SBame as the first step in the method of iterative propor:! ¢ b N
tions (Sec. 45): multlply the sample frequencies ni; in Romd
by the ratio mq /n: as in Eq. 51, (This ratio will very | from
row to row.} Do this for every row. N

For illustration, this proportionate adjustment wj,l‘l'\bﬂe’ carried
out on Table 1 (p. 107), the result being Table §(p, A17).

2, Form the eclumn total m ;. Subtra i (usually men-
tally} from the known total m.; and e ot it as a ¢ vertical
diserepancy ” along the top of o new t:1~ble {Table 9. Do this
for every column. In the same Wa,yL form also the resulting
horizonta]l discrepancies, ;. — maY.s (These would be zero
except for errors in rounding ofE to mtcgcrs }

3. Make up a table of Qo'rl‘ectmns (Table 9), based on the
vertical discrepancics foundin step 2. Distribute any one of
these discrepancies amofigst the cells in that column, in propor-
tion to ihe row toials*’r}a,. To do this, first caleulate the ratios
m./n, where n is xhqtotal sample. Enter these ratios along the
leit of Table 95\théy congtitute the multlphers for forming the
final correctjons, which are entered in the body of the table.
The correghign'to be entercd in row 7 and column f is the product
of m./nhy-the discrepancy in column j.

Thete corrections must now be foreed, to equal the col-
umnay discrepancies, exactly. This forcmg is to be carried cut
80, that (a) the sum of the corrections in any row equals the

\Lorrespondmg * horizontal disercpancy,” written in step 2
"’\ «and entered in the right-hand column of Table 8, and so that
"/ (8) the sum of the corrections in any column cquals the corre-
sponding  vertical discrepancy,” also written in step 2, and
entered near the top of Table 9. Parts {¢) and (b) are entlrely
independent. In Table 9 the forcing is indicated by putting
parentheses around a figure obtained in step 3, and writing &
new ﬁgure just to the left. Usually the forcmg ig small {a unit
or so in any cell), and needs to be done in only a few cells.
Large cells should be altered in the foreing, rather than small

ones. (See page 84.}
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TABLE 9
OORRECTIONS FOE FORCING THE MARGINAL TOTALS
{BrRUYERE METHOD)
(Steps 2, 3, and 4)
i=1] 2 | 8 | 4 _ Hga ¢
i, Vertical discrepancies Row ; $5Y
" {written in step 2) sums 1| 3GRS
31 ] 22 -33 ~22 (A%
f—
i = 1/j0. 16521 5 8l —6 (=5) -] 1wy | —1
2l 07078 201 @) -3 (=2 -1 (-2 | -1
3|| .o7187 2 2 s N o6/ o
4 4659415 (14)| 10 —15  os0io (-1 || o
5/| 06886 3 2 —20 ) -2 o] o
6 .16733 5 4 -5 (=@ —4lo (-0 o
Column sums |BI (30)|22 (23)—33.8232)(—22 (—23)
OABLE 10
THE FInsL REB{J@& bBTAINED BY THE BRUYERE METHOD
i=1 2 3 4 ” mg " 3,
N
i=1 3613 781 549 300 5252 5252
7N\
2 y\\J1sss 400 251 156 2305 2395
28 1608 435 271 118 2432 2432
™~
\”t 4 1| 10401 2451 | 1681 | 1143 | 15766 | 15766
51 1662 351 167 150 2330 2330
6 3915 867 543 337 5662 5662
m.;’ 22877 E285 3462 2213
33837
m.; 22877 5285 3462 2213

/7
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5. Add each foreed correction to the corresponding frequency
in Table 3. The result is Table 10, which is the end product.
Both row and column totals will agree with the controls, and
the work is finished, except for multiplying all the frequencies in
Table 10 by N/n, to make them correspond with the popu-
lation values {not shown here).

50. Some remarks on the accuracy of an adjustment. A least/
squares adjustment of sampling results must be regarded ag a
systematic procedure for obtaining satisfaction of the conditiens
imposed, and at the same time cffecting an improvement{of the
data in the sense of obtaining results of smaller variancéthan the
sample itself, under ideal conditions of sampling fri)’m a stable
universe. As a matter of fact, the variance of the.fta}idua,ls arising
in the adjusted cells will decrease with the differénce between the
total number of cells and the number of cgn{s}fﬂ totals, according
to the results of Exercise 3 at the end Qi Chapter V (p. 68). It
must not be supposed that any particalap adjusted cell frequency
is necessarily better than the original sample frequency in the
sense of being closer to the complete count. It may be, but also
it may not be, and there is no statistical way of discovering which.
All we know is that on the average the adjusted cell frequencies
will be hetter. AN\

But the decrease in{ variance is not all; adjustment to known
control totals has a»tm same time the effect of eliminating biases
in the nature of dinhérent differcnees between the sample and com-
plete count. . i effect is often more important than the decrease
in the variatioe of the sample frequencies.

Itis gl{e;iraible to get some idea of the errors of sampling by actual
trial ssth as by a comparison of certain sampling marginal totals
with the corresponding universe totals, as can often be arranged by

\{nééms of controls. Also, the sample can be tested for regularity
of patterns. There is another aspect to the problem of error —
even a 100 percent count is not by itself useful for formulating
social and economic plans, except so far as we can assert on other

grounds what secular changes are taking place.



Parr D
CONDITIONS CONTAINING PARAMETERS

CHAPTER VIII RO

7'\ "

CURVE FITTING IN MORE COMPLICATED CIRCUM-
STANCES w\ 3

at ¥

N

Bl. Some general remarks on the purpose of cuufvf}e fitting. To
extend the theme of Chapter I, we may say . thét the reason for
fitting & curve to a set of data is to summaftze the evidence pro-
vided by that experiment for making préa}ctions with regard to
future data. It is not the data fitted that are of primary interest:
it is the data of the next experiment th&thone holds in awe, Wil the
curve fit, or will it not? And n}li@ﬁ wo decide whether the curve
fits, we do so on the basis ofwhether it fits well enough lo give
useful results.  Are deductifhs (predictions) made from this curve
borne out in praetice glp@y enough so that it can be used as a
basis for action? The 'method that gives the best predictions is
the best method., A\

There have be@n many instances when deductions made from a
fitted curve, grfrom a series of curves, have made it unnecessary
to perfc&\g‘ertajn other experiments. As an instance, we may
turn toduzample 1 of Chapter X1, where a quartic 1s fitted to some
compresiibility data published by the Michels in Amsterdam.
,Tl}lg‘ quartic, when fitted to their compressibility data on carbon

“dioxide, and differentiated, integrated, and otherwise evaluated,
gives data on the index of refraction, the Joule-Thomson coeficient,
entropy, and other physical properties, that would be difficult and
time consuming, if direet observation wore required, When we
say that the quartic, fitted to the compresgibility data, gives values
of the Joule-Thomson coefficient, we mean that for certain pur-

128
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poses, the prediction s satisfactory in place of the Joule-Thomson
cocfficient that would be observed directly. Certain checks, in
terms of other experience and other deductions, which may be
available in isolated portions of the ranges of pressure, volume, and
temperature that are covered by the compressibility data, lend
confidence to the results — confidence of the kind that can bes
translated into action, such as the design of compressors for ref righ
erators and other machinery, AN

In order to extend the region of prediction into other argas and
other ranges (e.g,, other cities, other economic levels, higher pres-
sures, higher temperatures), not yet included in the "e;:periments,
it is neeessary to have related experience, or mez;m‘yhile to regard
extrapolations as pure conjecturcs. Such cdujéttures may be
regarded as predictions, but without a highydetree of belief, and
not a8 & scientific basis for aetion. S

It is important to keep in mind th@xpltimate purpose of curve
fitting, particularly when one is act-gaﬂy fitting curves for purposes
of action. Meanwhile, it is nccesgary that one learn to perform or
understand some of the procegditres by which curves can be fitted.
To this end, we resume our study of the adjustment of observations,
returning to the general §dlition worked out in Chapter IV.

It will be recalled thapearlier in the book some simple preblems
in curve fitting wg]%\}reated {Secs. ¢ and 10, the single sample;
Bee. 12, several samples; Sec, 15, a line through the origin).  These
problems werd\§imple, not just because the functions were simple
ones, but alge because the errors in the variables entered in such
mannerthat the parameters (adjustable constants} could be found
direqt-ly\by differentiating S. The solutions obtained for those
circumstances were and still arc satisfactory, but the research

¢ worker must be prepared for more complicated situations, such as
Woth variables subjeet to error, or functions in which the param-
eters and the errors do not enter in so simple a manner.

A framework will be developed in this chapter for more eom-
plicated circumstances. The simple problems just mentioned will
of course fit mto this framework, a5 will occasionally be pointed out.
Fortunately, the solution is alrcady worked out in general terms;
it is contained in the general normal equations on page 55. All
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we need to do now is to apply this solution to curve fitting, and see
how it can be adapted to routine computational procedure,
There will be a function to be fitted. We might write it

Flz,y; 6,b,¢) =0 1

to indicate that there is an equation involving x and y, and thé\
(adjustable) parameters a, b, and ¢. In the examples already
seen in Sections 9, 12, and 15, the functions were simple, namely,
x =g, and y = ba. . N
The problems considered in the last thres chapters (¢onstituting
Part C) did not contain parameters; the conditiong Were rigorous,
being geometric, or forced by complete counts. N d question arose
concerning the adjustment of parameters, because there was none,
We threw awany with abandon certain row®ehd columns of the
general solution that owed their origin to~the parameters (p. 53).
Now, however, we can not do this ; thogondition equations contain
parameters, and we must deal withythem, We shall see, though,
that there will be simplifications) 6f other kinds, and we shall
develop a procedure not unlxke ‘that contained in Chapters V
and VI, ~
52. Graphical considerations. Tt is desirable to have in mind
the picture of curve f@iﬁg shown in Figs. 16 and 17, pages 132
and 133, There al;eﬁ)bserved points, calculatod points, and true
points. The calgilated points, by definition, lie on the caleulated
curve, and the'tfie points lie on the true curve, The equation of
the caleulatédetirve may be written in the form of Eq. 1, wherein
% and y afethe coordinates of any point on the curve, and a, b, ¢
are thet chlculated {or adjusted) values of the parameters, which
are.bobe found in the solution (sec Egs. 6, p. 52). The equation
p Gfit'hé frue eurve is the Same, except that it is drawn with the true
parameters o, 8, y. It is assumed that if the errors of observation
were negligible, the observed coordinates X and ¥ would satisfy
the true curve, Actually, however, the observed points do not lie
on either the caleulated curve or the true curve; in f act, owing to
orrors of observation, the observed points usuaily do not fie on

any curve at all of the form of Hq, 1, though they may approximate
one closely., )
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As in Chapter 1V, we shall need some approximate parameters
ttg, bo, Co t0 start off with. If they were used for drawing the curve,
in place of a, b, ¢, there would be stil! another curve (not shown)
in Figs. 16 and 17, which might be called the approzimate curve
if it aeeded a name,

The calculated coordinates, and the calculated parameters, A
satisfy Eq. 1 exactly. The observed coordinates, however, and
the approximate parameters aq, by, ¢y, do not. When, for anir\
point, the observed coerdinates X and ¥, and the approximate
parameters, are substituted into the left-hand side of Eg\1, the
equation is usually not satisfied, which is to say that theJeft-hand
side is usually not zero, but is instead some smallquantity Fy,
defined as ’

Fo= P Y5 oot e) (O EQRD52) @

Of course, Fp may by accident be zero absome point, and will be
zero by design at any point through which the approximate curve
is forced to pass, as when the methjc}d of selected points is used to
determine satisfactory approximaja’w values ag, by, cg (cf. the reduced
type at the end of Sec. 55). "The quantities Fy at point No. 1,
No. 2, ete., will appear in the normal equations of Section 55.

3

#%

For simplicity anddefiniteness, the development will be written
out for only two coerdinates, » and y, at each point. The extension
to three coordidates is obvious, in which event Eq. 1, instead of
being the eqitidion of a curve in the =, ¥ plane, is written as the
surfoce F @y, 2; @, b, ¢) = Ointhe 2,3, zspace. See Example3on
pp. 2 iﬁ.‘fﬂr an jllustration in three dimensions, and Exercise 26 of
Sectibh\71 for one in four dimensions. An increase in the number
. of dithensions does not. necessarily increase the complexity of a
) ) o ps:bblem‘ '

M point is observed to be X , ¥; that is, the z coordinate of some
true point £, 4 is measured, perhaps several times, and the mean of
these measurements is X with weight w,. Likewise, the y coordi-
nate of the same (true) point is measured, perbaps several times,
and the mean of them is ¥ with weightw,. By Eq. 16 on page 22,
the weights of the observed coordinates X and ¥ at this point will

be in the inverse ratio of the variances of protracted random series
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of measurements on the true coordinates £, # (Ch, I), and directly
in the ratio of the numbers of observations taken. Otherwise
expressed, if these variances are denoted by Var 2 and Var y, and
the nurnbers of observations by ¥, and N, then the ratio of the
weights will be

N\
W llWy = = (3)
28N
6\
POy 0B TR~ N
(.y: 08,710 o .

- R,
- Fixyabe)=0 & &

* OBSERVED
x CALCULATED
o TRUE W
— CALC'D/ CURVE
-—ATRUE CURVE
= x

Fie, 18, A typical situation in curve ffbi’siﬁg Tt iz assumcd that the * true

points,” wherever they are, lie onyfhie *truc curve” Fiz,y; «, 8, v) =

0, o, B, v being the true and unkncfw:n values of the parameters. The “ cal-

culated points™ all lie on the “ealeulated curve” F(z, i a, b, ¢} =0, a, b, ¢

being the caleulated values gf@he parameters. This figure and the next one

first appeared in an artiele entitled *“ On the chi-test and curve fitting,”
J. Amer. St Assoc., vol. 20, 1034: pp. 372-332,

Of course, this ¥tio may vary from point to point, depending on
the varia.tiog\'ef the factors on the right (cf. Example 2, pp. 218-
230). (Y™
53.‘.:1‘}6 conditions. For each point obscrved, there is a cal-
culated point, and this caleulated point is forced to lie on the
wc‘éa,léulated curve (preceding section). The residuals must be just
\she distances required to put the caleulated point on the caloulated
curve; see Figs. 16 and 17. Now since the calculated point must
lie on the calculated curve, its coordinates must satisfy Eq. 1
(p. 130}, which is to say that

F(z,y; a,b,¢)

must vanish at every one of the calculated points, as indeed it must
at all points along the caleulated curve. Thus, for every point
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there is one condition imposed on the adjusted coordinates.
Altogether, there are as many conditions as there are points. For
» points there are » conditions,

Next, we look at the general normal equations (p. 53), also at
the conditions that were imposed (Egs. 3, p, 50), and we seck 3

CALC'D GURVE
Fixy;abc)=0 o A
TRUE CURVE OBS'D POINT .5-
F(x.y:cxiﬁ. ¥)=0
,

N x,¥) %
~. CALC'D POINT Ey 7%
\\ o L 3 3
., N
\(Q,q} J ”"\§
TRUE POINTH— Uy —= = mem o] e Y
AY
b © QBSERVED
\ x CATGULATED

5 Tre

Fra. 17. Relations between the “true,” “Lbsérved,” and * esleulated
points. 'The  and y eoordinates of & poinf wre observed; these observations
when plotted give the observed pointg™ " The point that was messured
ig the “ true point,” which is unknowp:ar[d Lies on the unknown “ true curve ”
Fz,u; o 8,v) =0, a, 8, v being thetrue but unknown values of the param-
eters, The “ culeulated curve {35, found by adjusting a series of chserved
points; its equation will havedhe kame form as the true curve, but the parzm-
cters therein will be the ¢ daleulated parsmeters” &, b, ¢. Corresponding to
each observed point thg;re\will be a “ caleulated point,” whose coordinates
are found by subtracting the ““ residuals ” ¥, and ¥V from the observed co-
ordinates X and VW& and E, denote the “errors in the obscrved points )
E,, By, and U, apd U7, sre unknown, but ¥, and ¥, are caleulated along with
the parameters;;%, e by the method of least squares.  As the figure happens to
be drawn, %@h of the six quantities Ey, ¥y, Us, Uy, Vs, Vy is positive.  Their
\\ "signs are indicated by the directions of the arrows.

2
&

W&yf Bf ’writing these conditions so as to foree the calculated points
e on the ealculated curve. This can be done by writing the
condition functions in the form

Fh:F(xh;yk; a;b:c) h=12--n “)
wherein the function ¥ on the right is the function found in Eq. 1,

which is to be fitted, and «, ¥ are the final calculated or adjusted
coordinates at point . These coordinates, along with the cal-
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culatc-.;d Pirameters o, b, and ¢, are to have such values that the
function # o the right vanishes at every calculated point.

. B4. The | coefficients. ‘Immediately upon writing the condi-
1:10-n fllnctinns in this way, we perceive that the coordinates of
POt & will oiter the condition function F (@n, ¥n; @ b, ¢) for that

point, by, not the condition funetion F (%4, ¥g; @, b, ¢) for some
other poipy g, As 2 consequence,!
P ) .\:\
—-—-—F(ﬂ)‘}., Hn;y a’}blc):o O

i ifgh N\ O
g F{an, yr; a,b,¢) = 0 D
Y g ,\

It then ooy from Eq. 14, page 53 (wherel\Js was defined for
the generg) solution), that \‘ D

Lg =0 when :y{# h (8)

This meap, that the L coeffeients.fiithe general normal equations
(p. 56) standing off the diagendl are zero.! Morcover, the L
coefficients syanding on the-diggonal contain only two terms each,
€cause all the other de{iiratives are zero, For these two, we may

Wwrite e
&
\ ¥= = '_'F(xh, i, &, b, C)
dry,
and P, (7
N 3
& e Fy=_—F 3 y &y b:
:“\. ¥ an {z, ya; @, b, €)
whegetipon
) o o B + FyF, (8)
\ y We Wy

The suffix h has been omitted, it being simpler to leave it undg;‘l-
stood that the derivatives and the weights, and hence the L coeffi-
cients, may vary from point to point.

1 A problem in which the coordinstes of one point do enter the condition

function for 8% adjacent point was published by the suthor in the Phil. Mag.
vol. 17, 1934 D 804-800. The problem deslt with the oseillations of the
pointer on & chetuical halance.
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56. The npirnal equations for curve fitting. The general normal

VIII] CURVE FITTING

Remark 1. The first term on the right of Eq. 8 drops out at
any point where X is free of error, for then the denominator
w15 eo; and similarly the second term drops out if ¥ is free of
error.  If both X and ¥ are subject to error, the two terms may
be of comparable magnitude, and hoth accordingly retained.
{CI. Remark 3 in Exercise 4 of Sec. 65, p. 181.)

Femark 2. From the way in which the L coefficients enter
the normal equations, and affect the standard errors of the
parameters (Sec. 62), it will be seen that one object in the designy

135

N
AN

of an experiment should be to produce small values of 1. 8 ™

two torras on the right of Eg. 8 give an indication of where time
and funds may wisely be spportioned. If one term is alreddy
small (possibly a quarter) compared with the other) then it
might not be worth the necessary expenditure o i@&uce that
term, already small, to half its value. Better 3 ould be to
spend even more time and funds to halve the lagher term.  Sim-
ilarly, if the L cocfficient at one point is already’small compared
with the I coefficients at some of the otheér points, then instead
of using time and funds to reducesthe Jsmall one further, it
might be wiser first to reduce the L ‘egefficients at those points
where they are largest. ™

Remork 3. By Eq. 9, page -in, we see that the L coefficient
at a particular point is nghelother than the reciprocal of the
weight of F' evaluated with“the corresponding observed coordi-
nates X, Y. This valie'ef F would be written F (X, Y; a, b, ¢).
It is the quantity désiknated as Fy' in Exercises 3, 4, and 5 of
Bection 38, pagcs‘l@&—lrlﬁ. Since I is the reciproeal of a weight,
/W will frequbptly be written in place of L as we go along.
(Cf. Rema?]r{’:i,“p. 181

equatios@i}ﬁ. 55) now take the form shown below., These can
N

Moad N s M 4 5 ¢ = 1
ol J o 0 e 0 Fi' R FF Fo!
\0 Ly 0 P ] a2 sz Fa2 Fog
6 0 L I 0 F’ F? RSB F?
. . \ (@)
0 0 0 Ln Fr Pt F2 Fe*
F' pt ps - 0 0 0 0
B RE RS Fyt 0 0 0 0
FL  p? g3 B 0 0 0 0

Q.
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quickly be reduced to a smaller sct, in number equal to the number
of adjustable parameters.  First, eliminate ), Az, * - Ny by solving
for them in the upper n equations, getting

N == (T}~ Fid — FPB — F2C)
1

M= = (Pt~ F24 — F2B — F2C) R
Ly (A X for <\
each point ) ){10)

A
| ‘:

ot ¥

M= B0~ A = YR~ FoCy |

Then substitute these values of Ay Agy o A Ahto the lower three
rows of Eqgs. 9. The result is Egs. 11, . As"in Chapter V (see
p- 59), the coefficients below the diagongl Wave been omitted,

4 B < 2N 1
—__‘—'—-—-—_"—'_‘_‘—.f,—-—.._._
[FQFQ,] [Ferb] [ﬁfﬂi} ‘.”'.v [I"ﬂpﬂ

L L A ]

P F {The normal
[‘—b-—o cquations for (1 1)
L curve fitting)

I:F ) b:| o,
o] &
B\ [f_f*’] [fcio]
) L L

These are Whe\trmal equations for curve fitting. They contain
only the pg;\a’;he"tcr—residuals 4, B, C as unknowns. The arrange-
ment of thetoefficients is symmetrical, and their quadratic form
positivg\definite, like the general normal equations whence they
cap™ (Sec. 28).  Once the barameter-residuals A, B, and € are
\?:ltza,med from the solution of the normal equations, the adjusted

alues o, b, ¢ of the barameters are found immediately by subtrac-
tion., More explicitly,

G=ay— 4
b=b - B (Eqs. 6, p. 52)
c=¢ - _

The caleulated curve is Eq. 1

into which the adjusted values of
@, b, and ¢ have been inserted,



[Ca. VII] CURVE FITTING 137

Several details remain: to adjust the observations (Secs. 56
and 58); to work out a systematic procedure for forming the
normal equations and solving them (Seecs. 60 and 61); to discover
in this systematic procedure a quick way of calculating the mini-
mized sum of squares, S (p. 57 and the exercise following); to
calculate the variance and produet variance coefficients of @, b, ¢
(found in the reciprocal matrix, Secs. 61 and 62), \

It iz important fo observe that the final values of a, b, andg\J)
¢ will be independent of the approximations ¢, by, 0. Thatdey®
to say, two computers, starting off with slightly d.iﬁcrenicjaf)’-
proximations (but with the same chservations), will ﬁn;’i their
parameter-residuals A, B, and € to be just enongh différent so
that their final calculated values of o, &, and ¢, aid hience their
final caleulated curves, are practically identical.

Under some circumstances, and for some }p@p,bses, Liowever,
the approximations ag, by, ¢ Must not be tQa rough. In other
problems it makes no difference what(theése approximations
are, except that always the rougher thf:y'are, the more figures
are required in the normsal equatidns, hence the greater the
computational effort required..}These remarks are repeated
more specifically in Exereises 455y and 10 in Chapter X (pp. 179,
183, and 187). 2\

In regard to the magt{en of arriving at the approximations
aq, b, ¢q, it should beadade clear at the outset that in practice
this is usually not.dificult. Often one will have good enough
approximations\gimply from previous experience. There are
graphical methads, by which one draws in & curve free-hand,
after makihg¢a judicious choice of scales, such as changing
y = ae™/inte the logarithmic form In y = In e + bz, to make
it strgiphit. There is the “ method of averages,” called by
Normiar Camphell? the  method of zere sum,” by which one
finds what values of g, b, and ¢ will fores the ealculated curve to

o ¥ Norman Campbell, Phil. Mag., vol. 39, 1920: pp. 177-194. See also
Whittaker and Robinson's Caleulus of Observations, Art. 131, p. 258,  Ac-
cording to them, the method of averages (i} was much used in the latter
half of the 18th century; (i) was first published by Tobias Mayer in 1748
and 1760, A recent paper by Wald contalns some interesting and valuable
theorctical work on the method of averages, It turns cut that when the 2
and y ohservations have weights in constant ratio, the method of averages is
unbiased, and in statistical efficiency compares well with the method of least
squares, at a considerable saving in labor (in apreement with Campbell).
The reference to Wald’s work is the Annals of Math. Statistics, vol. 11, 1940:
pp. 284-300.
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average out correctly over groups of points (three groups if
there are three parameters). Then there s Cauchy’s method,?
which has much to recommend it.

Lagtly, there is the so-called metheod of selected points, con-
cerning which brief mention was made at the end of SBection 25,
page 52. By this method one simply selects three points —
usually two end points and a middle point, if there are three
parameters -— and solves three simultanecus equations to find
what values of @, b, and ¢ force the calculated curve to pass
through these points. ‘The values so found scrve ag wg, by, C;]’\:\
If there are two parameters, two points are selected, and soemy ©
This caleulation is often fuirly simple to earry out, and it pos-
sesses the advantage of giving the computer zero @jsdﬁés for
three of his ¥y functions, thus slightly cutting doyf/s com-
putational effort. ~\

The method of selected points is much usedandensly justi-
fied on grounds of simplicity, yet it is about the worst conceive
able method of curve fitting. If the compétér is not careful to
select representative points, he throwsawhy practically all the
information contained in the rest of the,points, Yet this much
can he said, if therc were no errorgjn afiy of the points, it would
yield the correct results for ¢, biand c.

For free-hand methods of eugve fitting, and for general ad-
vice in the interpretation.dPstatistical ecaleulations, Ezekiel's
Methods of Correlation Awalysis (John Wiley, 2d ed., 1941) iz
heartily recorrmlend?gl\

3

56. Adjusting théxq%'s’ervations, or finding the calculated points.
Going back to Eqs\I2 on page 54, we see that the z and y residuals
will depend on, the Lagrange multipliers in the following manner —

RS 1 -
\\ Ve = . Mz | (z Tesidual at point &) (122)
.s t’.‘ 1 . : .
e Vy = o MFy  (y residual at point 2) - (12y)
N\ W ¥, )

) 3
Once the residuals V, and V, have been computed, the adjusted
(caleulated) coordinates at point 4 can be found from the equations

=X — Vg (13z)

(Cf. Egs. 6, p. 52.) . -
: (13y)

yp = Y5 — Vy
3 Cauchy, Comples rendus, vol, 25, 1847: p. 650.
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The numerical value of the Lagrange multiplier X can he
found from Liq. 10 (p. 136}. F, and F, are numerical values of
the derivatives of F at point i, After differentintion, F, and F,
are functions of x, y, and a, b, ¢. We can not evaluate these
derivatives numerically at the caleulated point £ until we find
the residuals and the caleulated coordinates, but that is just
what we are trying to do now. In practice, fortunately, for use
in Eqgg. 10 and 12 it is sufficient to evaluate the derivatives at

the observed point, using the approximate parameters, though/A
the final calenlated parameters can be used if desired. \' W

Egs. 13 give the coordinates of the calculated point coxréspond-
ing to the observed point Xj, ¥ Finding the caleylated points
is the process of adjusting the observations; when & and g, have
been caleulated, the observations Xy, ¥ aresald’to be adjusied.
The caleulated point x4, ys is the least squares strmate of the posi-
tion of the unknown true point &, m. Bsr}ously, it will depend
not only upon Xj, ¥y, and their weight#{but also more or less upon
all the other points and their weights, In randomness, the
varianees of the caleulsted coordj;_n’gjces are less than the variances
of the obscrved coordinates. 8%

Just how is this dependenite tied up with the other points?
Through the normal equations (Egs, 9, p. 135), or their equivalent,
Eqgs, 10 and 11, Eq,s."'i‘l supply the parameter-residuals 4, B,
and ¢, which are ta be used in Egs. 10 to find M, g, =+, An
These in turn argused in Eqgs. 12 to compute the z and y residuals
at each pointpbgwhich the observations are adjusted, as indicated
in Eqs. 130

We nd®) have a method of adjusting the observations and of
estimdting the parameters a, b, ¢, when both the & and y coordinates
arefithject to error, but it must be remembered that the solution

~depends on certain simplifying assumptions; namely, that the
squares and higher powers of the residuals can be neglected in the
Taylor series of Chapter 1V,
Remark 1. A familiar method of adjusting the cbservations,
valid when all the z coordinates are free of error, is to substitute
the coordinate free of error into the formula F e, y; ¢, b,¢) =0
(Eq. 1), and solve for the other coordinate. Thusin the parab-

ola,
y = o+ bx+ o’ (14)
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if z is free of errcr, it is easy to calculate ¢ for a given «, once
a, b, and ¢ are determined.  But if # is subjoet to error, one
must either solve a quadratic for # in terms of a known ¢, or —
what is usually easier —adjust the & coordinate by using
Eqs. 12 and 13, after evaluating the Lagrange multipliers in
Eqgs. 10. .
When the funetion I of Eq. 1 is not solved for y explicitly,
it may be easier to adjust the y coordinates by means of Figs. 10,
12, and 13, rather thun to substitute directly into Fg. 1 and solve\:\
for y in terms of 2. Bimilar remarks apply for adjusting then
coordinates whoen @ alone s subjeet to error. >
When both coordinates are subjeet to error, one must imply
Egs. 10, 12, and 13, if he would adjust the observation.\é: (For
& numerical illustration, see the example treated iz~Section 78,
pages 227 ff.  As an exercise, the student cotld et this time
work out the numerical values of the reraining mine caleulated
points in that example.) 2>

Remurk 2. Gause and others gaveMudthods for adjusting
the obscrvations in problems of geodesy and astronomy
(Chs. V, VI, and VII, constifuting\Part C). Unfortunately,
they did not give muech attentidn®to problems in which the
conditions contain parameters feurve fitting), especially when
more than one coordinate itaihjcet to error,

It has sometimes beed Suid that least squares is reasonable
enough in surveying @ﬂ@\astronomy, but that it is illogicsl and
equivoeal In eurv {fmtmg. Actually, the principle of least
squares is alwayg the same (p.14). The distinction between the
problems lies ju\tRe conditions that the adjusted quantiticz are
subjected th, A neglected but worthy paper by Kummell* in
1879, hadNb" not been overlooked, could have set matters
straights (Later papers by Stewart? (1920} and Thlex® (19232)
also.exphasized the unity of the different kinds of problems.

N

witemark 3. The term “adjustment of observations,” as
¢Nthus often been applicd heretofore to curve fitting, has meant
\”'\; “& caleulation of the paramcters a, b, ¢ from a set of data, Now
we scc that the parameters enter only as unknowns in the
conditions that are forced upon the adjusted quantities. Least
squares is primarily a method of adjusting the observations,

and the parsmeters enter only incidentally, As s matter of

fact, least squares is the only method of curve fitting by which

* Charles H. Kummell, The Analyst (Des Moines), vol. 8, 1879: pp. 97-105.
SR, Meldrum Stewart, Phil. Mag., vol. 40, 1920; pp. 217-227,
% Horace 8. Uhler, J. Opiteal Soc., vol. 7, 1623: pp. 1043-66.
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one can profess to adjust his observations. But, of eourse, the
determination of useful values of the parameters and their
standard errors is often the prime purpose of an investigation.

Remark 4. The method of least squares is the only analytie
device for curve fitting that takes account of the weights of
the obscrvations. If both & and y are subject to error, it is
necessary that both coordinates be given their proper weight-
ing at every peoint. In graphieal methods of eurve fitfing, the
eye can be trained, to some extent, to take account of weightg.,\‘\

Remark 5. Inthe next chapier we shall see that it is possilile

to compute A\
8 =3 (w V22 + w, VD L s)

without caleulating the individual x and y residuals,{pi)r sguar-
ing, weighting, und adding them. However, ity often found
worth while t0 draw the ealculated curve, and\be lay off the =
and ¥ residuals, to be able to note whetherényof them is espe-
cially larpe. In thig manner, it is somatindss Bossible to discover
sourees of spurious observations that would be hidden in a com-
prehensive test like the chi-test. | ™

57. The distribution of x&ﬁ:’fhénleast squares value of
1 N
K = i eV E + w0V (16)

for a fitted curve ( é@'ided it is the right curve, and the observa-
tions arc randomMas the probability distribution”
4} k=2

\ ’:1\3(‘);2)‘:1;(2 e (Jc?‘)_;—e'é"2 dx*? {1n)
R r(Gk)2¥
W’hel'e®"

, &:a—i’ number of points — number of adjustable parameters (18)

\k\'ls commonly called the ¢ degrees of freedom.” 1t was recognized
by Gauss, though he gave it no particular name (cf. footnote 6 in
Ch. II). The effect of including both z and ¥ residuals in x* is
merely to add the second term in the gummation in Eq. 16, The
form of the distribution is unaffected,

7 See an article by the author in the J. Amer. Stat. Assoc., vol. 28, 1934:
pp. 872-382. A necessary lemma thereto Is given in the Phil. Mag., vol. 19,
1935: pp. 539-402.
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Hestorical nofe.  The distribution of %2 for problems in curve
fitting where y alone iz subject to error was first published by
P. Pizzetti in an article entitled I fondamenti matematiei per
Ia critica dei risultati sperimentali,”’ At della Regio Universitd di
Genova, vol. xi, 1892: pp. 113-333. Helmert's distribution of
& for the simplest problem in curve fitting (Bec. 9), arrived at
also many years later by Student in 1908, can easily be converted
into the distribution of x%. Ielmert guve this distribution in
Schlémileh's Zeitsehrift fitr Maih. und Physik, vol. 21, 1876:

[BEc. 58]

N

pp. 300-3, and if iz interesting to note that Pizzelti referred 10€ \J)

Helmert’s work, Helmert's
Emanuel Czuber’s Beobachiungsfehler (Teubner, 1891), ppl47—
150. Pizzetti’s result was generalized by the author fenarrars
in both the # and y coordinates, in the paper refefréd to in
footnote 7. The assumption of normally distributed observa-
tiong was presumed. \

There it no such thing as a distribution;'stl"x2 unless the
fitting is done by least squares; in other
mized x* has a distribution.

"

S . £N
derivation iz reproduced in

words, only the mini-

b8. Some geometry concerning thé fiidjustment of observations.
Now let us consider some of the détails connected with the ealeu-

lated points, or the adjusted.

fqbservations. Let & be the line

segment joining the observefhand ealculated points. By Eqs. 12
we can find the slope of this line segment;- it is

$

A aF
Slopeof @ — Lgyresidual  V, w, Fy _w, 8y we de
. ,\‘tlmx residual V., w, F, Wy ﬁ‘ ty QY
\, ar
P\ (19)

;Fhe' last step here involves the very important rclation learned

- or
. . dy dx F.
in elementary caloulus, that if Fiz, y) = ¢, then — = — o= = — —=.
Iy calou at i Flz, y) = ¢, then =’ 5 P
dy
Eq. 19 says that
.
The slope of ¢ = — == 1 (20)

wy the slope of the curve
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Hence if wgz = 1y, at point %, the two slopes are negative reciprocals
of one another, and if the x and y scales are equal, the line segment Q
will be perpendicular to the curve (but see Exercise 1 at the end of
this zection),

If at any point, we 11y = © or is very large, which is to say
that X is relatively infallible, then the line segment Q is vertical ,
and the adjustment is all in the y coordinate. An exception may
occur in the neighborhoed of any portion of the curve that is
vertical or nearly so; there the derivatives F, and F, usually" affect
the normal equations and Eq. 20 in such a way that the curve is
brought close te the observed point, and the line segment Q is

drawn away from the vertical. A
THE TANGENT O
AT POI NT b, 72\
\( SLOPE .._5935'9
N
THE o\
CALCULATED \ Q/“( Yy
i

-

CALCULATED -y
{OR aDJUSTED} ®
K\ \
L\
A \
; \
N \

<
Fra. 18, /90-portion of Fig. 17 redrawn for further consideration.

If at a%v"point wy, 1w, = w0 or is very large, which is to say that
Vis l‘e}atlvely infallible, then the line segment € is horizontal and
the ad.]ustment iz all in the x coordinate, An exception may occur

Siplthe neighborhood of any portion of the curve that is horizontal
ar nearly so; there the derivatives Fp and Fy usually affect the
normal equations and Eq. 20 in such a way that the curve is brought
close to the observed point, and the line segment Q is drawn away
from the horizontal.

If at any point, w; : w, is finite, i.¢., both X and ¥ are subject to
error, the line segment @ will be neither horizontal nor vertical,
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but inclined, and there is adjustment in both the z and ¥ coordi-
nates. Exceptions occur. In the neighborhood of any vertical
portion of the curve, the line scgment Q may be pulled to a nearly
horizontal position, and, in the neighborhood of any horizontal
portion of the curve, the line segment @ may be pulled to a nearly

vertical pogition. \

ExsRre1sEs O)
"\

Ezercise 1. Suppose that the x and y scales are equalon the
graph of & certain curve, and that, at one of the pointg{ths weights
of X and Y are equal, whereforc the line segment €'in ¥ig, 18
(p. 144) is perpendicular to the curve at that peitt,) "Then suppose
that the graph is redrawn, and that the units in Which ¥ is measured
are changed, as from fect to inches, while the units of X remain
unchanged. O

(@) Prove that the line segment Q i§ 10 longer perpendicular to
the fitted curve. (Hint: The ratjpf’wy { Wy was unity before the
change in scale, but it is not so afterward. If all the y coordinates
are multiplied by C, becausc of the change in units, then the weights
of all y observations arc deeseased by the factor 1 /C% and the new
value of wy : w, is (2 titnds the old one. Moreover, the new slope
of the eurve is € timgs{aw’great as before. By Eq. 20, the slope of
the line segment ¢ i;ﬁio € times as great us before, and it follows
that @ is no lon%ei' ‘perpendicular to the curve.)

(b) Show that the change in the units of measuring ¥ affects
the normal.eqiations only in such a way that the ¥ coordinates of
the calmié‘ted curve and the adjusted points are all multiplied by €.
(Thug\dny change in units is automatieally taken eare of by the
normal equations., This is in contrast with the arbitrariness of

{odrve fitting by eye, by which very different results may arise
merely fror a change in units.)

Ezercise 2. When there are three coordinates, the surface
Flz,y,2; 6,b,¢) =0

is 1o be fitted to the n observed points. L then contains three
terms — the two already written in Eq. 8 plus F,F,/w, Show
that if =, y, 2 are observed with equal weight at any point, the line
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segment @) joining the observed and calculated points is normal o
the fitted surface.®* Insucha problem, the calculated points lie on
the caleulated (fitted) surface. Sec Section 81 for an example in
three dimensions, and Exercise 26 of Section 71 for one in four
dimensions.

Ezercise 3. Show that the minimized sum of squares, 8, ean he ¢
written as X WFy'2, wherein Fy’ is the left-hand side of Eq,.1,
(p. 130) evaluated with the observed coordinates X, ¥, and’ the
caleulated paramecters @, b, ¢; and W is the welght of Fg {cf.
Remark 3 at the end of See, 54).

From the way Fo' and W are defined, it turns outxghat
P =F(X,Y; a,b,¢)
=Fy—F, A — B —F.C (Ng&ciphng residuals
abhigher order)
= F;."Vﬂ: + Fy"ry (SEG Eq. Z’p. 53.) (21)
and O

L ¥
a)

W = 1 at point A (8)

The solutlon to the probjém then lies in writing, as usual,
S = Pw.V.2 + wy Vit
and noting that from E4¥. 10 (p. 136)
K& WP ot point b (©2)

whence Egs, 12 Frive
N4

\ X
k.

o V.= wreE,
7\ e
O 3)
QA B ,
¥, = - WFO 7,

’o

2\ f@r the z and » 1'981{11.13.}.5 at point . Substitution into w.V.?
/ 4w, V2 gives the required result in terms of Fy' (due to Kum-
mell, 1879). This result is useful in Exercise 3 of Section 61,
page 163,

Ezercise 4. Prove that W in the preceding exercise is actually
the weight of F', Le., of F(X, ¥; q, b, ¢). (Hint: Apply Eq. 9,

8 This result was proved by the author in the Phil. Mag., vol. 11, 1931: pp.
146~1586.



146 CONDITIONS CONTAINING PARAMETERS  [Spe 58]

p.40.) Hence the new expression 3, WFy'2 for § can be regarded
a5 8 sum of the weighted squares of residuals, Fy” now being defined
as a new kind of residual.

Erereise 5. If the 2 coordinate is free of error, WFy'%is equal to
@yV,?, and, if ¥ is free of error, WF,'? is equal to w,V,2.

Ezxercise 6. Prove that for any observed point in the neighbor-
hood of which the slope of the fitted eurve is positive, the residuals
V. and V, will have opposite signs; but, if the slope is négative,
then V, and V, will have the same sign. In other watds, when
the fitted curve lies below the observed point, then th@calcu]a.tcd
point lies below and to the right of the observed poﬁt if the slope
of the fitted curve is positive, but below and to the left if the slope
is nogative; and when the fitted curve ligsiﬁbove the observed
point, then the caleulated point lies aboyeé and to the left if the
slope is positive, above and to the rightif the slope is negative
(see Fig. 19), R\

085’0

O
Fra. 1}3. 3 Showing the possible and impossible positions of the calculated
N\ point.

\ﬁ’werc'ise 7. Show that in fitting
¥ = a+ b+ ea? (24)
with y alone subjeet to error, Eqs. 10 reduce to
A=l ¥ ~ (a0 + box + cz®) — (A + Br + Ce?)}  (25)
= (Y — g) (26)
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whenee Eqgs. 12 and 13 on page 138 reduce to

A
EY——
¥ wy

Y —{Y — (@ + boz + ¢02®) — (4 + Bz + Cz®)}  (27)

or
y = a+ bz + ex? \<\
In this circumstance, therefore, ¥ may be caleulated at a.n@%%t
merely by substituting the x coordinate into the equati n\\ h the
adjusted values of a, b, ¢. ) ‘A;\‘ \
Y
‘O
&
\
&
N
&
O
_ (}C,»
_ 2} b 2
Q7



CHAPTER IX

SYSTEMATIC COMPUTATION FOR FITTING QO
CURVES BY LEAST SQUARES Ko

59, Preliminary note on the tabular solution. In the @si?ematic
solution of the normal equations for geometric conditions, given
on pages 82 and 83, we saw an easy way of compdihg the mini-
mized sura of squares, S. In Section 61, we shalk 8¢ that the same
routine for solving the normal equations in cuive fitting will also
yield 8. We shall, moreover, sce how ouf2iiiitial approximation
to the sum of squarcs is diminished as owe\parameter after another
is adjusted. O

In order to gain some prelimhlairyffamiliarity with these charac-
teristics of the routine, we shalleteturn to the simple illustration
considered n Scction 10, where we had the n observations and

.

OBSERVATION&%NT) WEIGHTS (coLTMXs 1 AND 2)
O‘ ) 4
COMPL'TATIOL'E;\BQﬁ"mN'DING T AND 8 {coLUMNS 3 aND 4)

(1) WANN2) (3) {4)
¢ ‘1\ 4 Weighted deviation ~ Weighted square
Observa,tiqsk “  Weight from e of the deviation
\\:"\:“ from 74
Cn W wi{r — ag) w1z — ag)?
O 2 wa w2{T2 — ag) wafze — mg)?
...\3:\,: 3 g walzg — ) wa(zs — ap)?
2y Wy wa {2y — a9) Wa {2y — ag)?
- _ 2
Wid av, = 20E =) o Tl - a)?
2w w
=p = Q

148
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welghts listed in columns 1 and 2 of the table on page 148. The
weights eould be merely the relative frequencics of oceurrence.

The problem now is the same as it was in Section 10, namely, to
find what value of the parameter ¢ in the equation

r=a (1)

N

renders the (wcighted) sum of squares, S, a minimum. Nowy
however, we shall start off differently, because we wish to pai}te‘rn
the solution after the framework to be explained in Sectio b1 for
more complicated problems. We shall use an approxlmatlon o
for a, and shall correct it later by finding the resuitk&l A, which,
when subtracted from. ¢q, gives the final value of(o (turn back to
Eigs, 6 on p. 52).

Corresponding to Eqs. 11 in Section 55 (ﬁie normal equations
for curve fitting), there will here be one an?l only one normal equa~
tion, with one unknown. We proce€d) o calculate the one and
onty L coefficient therein; also the sight-hand member,

For the present problem we se't" ’

P=x—0a (Eq 1 of Ch, VIII)
whereupon m\w
Fg = 23 = c%\\ (For observation No. &)

The derwatavefs.\ sh;e
F, &Y, Fo=—1 (Tum to Eq. 5 of Ch. VIIL)

W

whenc(\}%“’:
.u\"“f" L= FoFe _ 1 (Eq. 8 of Ch. VIII)
N/ Wy W

\I‘he right-hand member of the one and only normal equation will be

[ 2] - - B ue— a0

The sum of squares formed with ap will be

2wz — Go)z
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which, be it noted, can be written as [FoFy/L], a symbol that in
more complicated problems denotes the sum of squares formed with
the approximate values {0g, by, cg) of the parameters, In Sce-
tion 61 and beyond, this symbol is abbreviated to {00].

We now make substitutions into Egs. 11 on page 136. Row 1
constitutes the one and only normal equation. For reasons that
may become clear later, we introduce Row 2, containing in'<he
1" column the sum of squares formed with the apprommdp@g n.
Rows 3 and II are formed by the manipulations clescnbmsl in“the

column “ How obtalned.”
Row 4 = 1 ALY
I E W — 2 wir — ag) \ .
2 2 wiz — ap)? i N How obtained
3 —{ X wk —aol}iquéu’ Multiply I by
A + Tz — an)f 2o w
II 2wz — ag)? N Add 2 and 3

{E w(:«;,-— co) V2w

Solving Row I for 4, w@ get

~

O _Zuwl — )

"\\A = o (2)
whereupon \x -
a“\é% A (Cf. Eqgs. 6, p. 52.)
AL g 4+ =0~ ag)
R\ Zw
»\\ 3 )2 we
Zowr -

= S 7 (By definition of z) 3)

The least squares value for ¢ is thus Z, the weighted mean of the
observations, as was obtained by the direct solution in Section 104.
The extreme left entry in Row II is none other than 8, the
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minimized sum of squares. This is so because
(The extreme left entry

i Row IT) = X w(s — ag)? — 122 = @)}

T w
= Z 'Lsz —_ ——————(Zzwi)z ~
=Xwl-BXw e

which is the value of S shown by Eq. 11 in Section 10q, pagé:ig.

This tabular solution will be extended later in this cha.pt}:r t.‘a the
caleulation of parameter residuals (called A, B, C) afid'the mini-
mized sum of squares, S, in more complicated problems in eurve

ftting. \
- X. \'

At this point, it is interesting to percei &(that the tabular solu-
tion just deseribed is equivalent to agérfain rapid method, often
used in statisties, for computing the meah Z and the standard devi-

. ation s of a set of n observations guch as those shown in column 1
above. The method will be degexibed in steps.
i. Select an arbitrary datum, perhaps a rounded-off guess
at Z, which talces the plase of the approximation ag in the tabular
solution just descrinQd’.
i. Write down\n column 3 the deviations of the observations
from ag, and.gveight them.
iif. Torythe squares of these deviations, weight them, and
enter p{a@ﬁ\?cighted squares in column 4,
hTake the weighted averages of columns 3 and 4. Call
tlegé averages P and Q. They are the correction factors to be
ohiFed in finding 7 and &2, according to Egs. 5 and 6, ahead.
\'The weighted mean and standard deviation of the n observations
are then calculated by writing

T=ao+ P (6)
2 =Q—P? (6)

Now the correetion factor P may be considered either as the
average residual reckoned from the arbitrary datum o, or as the
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distance between Z and ap. @ is the average squared residual,
when the residuals are reckoned from g, and s? is the average
squared residual, when the residuals are reckoned from @. In
words, Eqs. 5 and 6 state that

Z = (the arbitrary datum ag) ++ (the average residual
reckoned from ag) (DN

s* = the average squared residual reckoned from a O\
= (the average squared residusl reckoned from o))
— (the distance between ¢ and ag)? N (8)

It can be seen from Eq. 4 that the extreme left.éntry in Row II
{(p. 150) divided by I w is \%
2 \
Q-P oW
which is none other than 2. Therefonefblié (minimized) sum of
squares S is just (X w)s®. Henceth® tabular scheme shown
above for caleulating 4 and S is ;oduiﬁalent to the steps outlined
for the rapid method for getting.3 #nd 2.

It is important to note that\fie entry 3 w(z — a5)? in Row 2
in the “1” column arises by summing squares of deviations
reckened from ag, and the quantity in Row 3 just below it is pre-
cisely the amount b\,&'\{%‘h‘ich 2wz — a¢)? must be diminished to
get the minimum sum'of squares, called S. Likewise, the quantity
€ arises by summing squares of deviations reckoned from g, and
P2 g the ampufﬁ- by which this sum of squares must be diminished
10 get &° (se{a}]q. 6).

.'(fﬁ\ his example, both in the tabular solution and the © rapid
Jnethod  for conputing 7 and &%, the number ap need not he cloge to

S \a It can have any value whatever, but in practice it will usually
\ 3} bea rounded-off guess at the mesn {which is the final value of al.

60. Systematic procedure for forming the normal equations for
the parameters. There will be a formuls to be fitted, Tt might be
¥ = 6+ bz + ¢z (%)

or it might he
y = ae® (10)
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or it might be something clse, Whatever it s, we can transpose

one member and write it in the form

Fiz,y; a,b¢) =0 (Sameas Eq. 1, p. 130)

(11)

Thus, for Eq. 9 above, F would be y — (a + bz + ¢ez?), and for

Eq. 10, F would be y — 2™

Q"

The reader may recall the use of the symbol Fy in the precedibg
chapter (Sec. 52). Fystood for the value of the function F af gome
particular ebserved point X, ¥ (not a caleulated point), ang\evsilu-

ated furthermore with the approzimate parameters ao, /bl Co.

For

instance, for Egs. 9 and 10, having fixed the form of the function

in the manner just described, the numerical vah}e\of Fyat
(obgerved) point X, ¥ would be ¥ — (a0 1 boX + ¢ X?).
Eq. 10, ¥o would be ¥ — aqe®*. N

the
For

In fitting & function by least squares,.ﬂﬁé’ first thing to do is to

fix the form of the function F by trapspesing all terms of the
mula to one side of the equation, fe g6t it in the form of Eq.

for-
11.

The steps then to be followed anejic’)uﬂined below. It is interesting
to compare these steps with }1;‘1103& of Section 33, wherein there

were no paramsters.

ist step. (a) Wonk‘"c}ut somehow satisfactory approximations

ag, o, ¢o for the parameters (cf. the reduced type in Secs. 25
55); (b) caleulafénumerical values of Fy at every point.

In sogfr;; };roblems, depending on the fermula and the weighting,
1t is,.pd issible to take ag = be = co = ¢ when caleulating Fp
{baf\not LY, in which event the residuals 4, B, € turn cut to be
.pﬁe\a.djusted values —a, —b, —¢ themselves (ef. Exercises 4, 5, and
240 'in Secs. 65-6). But this is not usually advisable even when per-

{ “\ missible.  As 8 matter of saving time, a good rule is to commence the
) adjustment with as good approximations o, By, ¢p 28 can be found
with a reasonable amount of trouble, and thus to cut down the
aumber of figures required-in the formation and solution of the

normal eguations.

2d step. This step requires some differential caleulus.
consists of writing down the various derivatives of F, namely

Fa, Fe, Fo, Fuyand Fy

and

1t
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The first three may be needed in forming the normal equations, the
last two for calculating
Le F.F, " F Fy

W Wy

{Bame as Eq. 8, p. 1534)

and the summation required at the n points. L may vary fro
peint to point, and some or all of the derivatives F,, Iy, and Y
almost surely will. So will Fy. ne \

3d step. Work out the numerical values of Fy, Fy, Fc, ana L at
every point. The following tabulation is suggested. ¢ N\

7

TABLE 1 w\i'
PRELIMINARY TO TED MATRIX (3D Stowe)
a )

7 N/
h F, w, Fy, w, L L Qa\ Fy F, Fy
1 o NN\
2 .
3
1 [ P - m\".

Of course a.uxi]jary\columns may be required, depending on the
problem and_thevwhims of the computer. Or, perhaps some
columns listed"Will not be needed, e.g., if w, were = all the way
down (z fr.g&i‘om error) then F; and w, would be omitted, since
y alone.weuld contribute to L, which would be merely F,F,/w,.
Likegise, if y were free from error all the way down, then the F,
and, w; columns would not he needed, for then L would be simply

\'F Fo/we.

4th step. Divide each entry under F,, Fy, F., and Fy by the
corresponding +/L.  The sums at the right or bottom. (one but not
both) of Table 2 can be formed by cumulating these quotients in
the horizontal or vertical, the individual quotients being entered in
the table. (This cumulation requires 2 machine with a double
multiplying dial, one to be locked for cumulating quotients, while
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the other clears when desired. See a remark following Table 2 in
Sec. 33, p. 72.)

TABLE 2
Toe MATRIX FOR THE FORMATION OF THE NORMAL EquatioNs! (4TE sTEP)
k _.F.'i ﬂ E, Fo g %
NG VL vL VL um o LV
i . \AD
2 o\
3 Ao
. NN
S
- )
"
Sum #E 7). ..
u )

*

I
\ s

N\

P
The sums a4t the right and along the/Bettom are used for checking
the formations of the normal equations exactly as was done with
Table 2 in Section 33. Tirst of™all, the sum across the bottom
should equal the sum down the “right-hand side, as indicated by
the check mark. In running dbwr the columns, enmulating squares
and cross-products (the fifth step, p. 156), the final total in the rulti-
plier register will equal, the sum at the bottom of the multiplier
column pruvided\ owchanges in sign oceur in the multiplicend
¢olumn. In aymaehine with a double multiplier register, one part
of which carDe locked for cumulation while the other clears,
individudh multipliers can be checked at will in one dial, while
the supof %he multipliers cumulates in the other one for checking
af; thesbettomn.
vhaximum of three or four significant figures in any eolumn

will suffice. This means that if there is great variation in the

AN “Sizes of the numbers in any colurnn, some entries in Table 2 may

have only two, oF one, or not cven any figures; see, for instance,
pages 213 and 224; also page 79.

The denominations of the different columns should be made
uniform by writing powers of 10 ai the top of each row, to apply
to the whole column (sce the solved examples at the end; also the
one in Sec. 34). No attention need be given to the powers of 10
unti! the end, when the solution of the normal equations is decoded.

Table 2 iz Ch. VI, p. 72

1 Concerning the use of the term mastrix here, see the note appended to
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bk step.  Form the normal equations from Table 2 by the famil-
iar process of adding squares and eross-products of columns.
Thus, no matter how complicated the weighting, and no matter

-what be the form of the fitted curve, the whole procedure is uni-

form, and we are brought to a uniform and familiar process for
the formation of the normal equations, Q)

As slready suggested at the commencement of this section, thi\
student should compare this matriz with the previous Table ;{ of
Bection 33 (p. 72}, which arose in the consideration of conditions
#iot containing parameters. The headings in the tables agerdiffercni,
there, of course; but to the computer, the routine pratedire of
forming the normal equations from Table 2 is the same here as it was
there. Also, the routine of solution is the same {edmipare Secs. 34
and B1). The exereises in Chapter X will provide praclice in the
hecessary steps for sctting up the normal /@gtiations for several
types of functionsa. : S0

/

Remark. By the procedure here explained for the formation
of Table 2, whence the normal egliations are to be sct up, the
solution of the normal equatiotis Wie, the valucs of A, B, ¢,
ete.) Is unequivocal. ‘That i3 does not matter in what form
the equation to be fitted i wriltten. If one had, for example,
¥ = ac**, he could put thesame equation in the form In ¥=1lna
~+ bz, using in the formier case F = y — geb® and in the latter
case, f = Iny — lng - hz. Turther illugtrations will oceur in
the exercises of B};\mpter X. When the normal equations are
made up according to the steps outlined above, the resulty will
be the sume o any form of the fitted eguation, o within higher
powers of(the residuals,

As afigther example, the straight line can be written as y = o
+bor as v = —a/b + y/b, and F may be ¥y — a — bz or
zdnd/b — y/b. Fither way, the results will be the same to

Swithin higher powers of the resicuals, Summed up, the re-

& “\Bults — the final ealodated parameters, and the adjusted observa-

)y tions, are independent of the Jorm in which the equation is writlen.
Very large residuale, Le., very rough data, will invalidate this
statement to some extent, but if the data, are as rough as that,
jc.hey may not be worth fitting anyhow, See some other remarks
in Bection 26, also in Exercises 18 and 23 of Chapter X.

61. Systematic solution of the normal equations, The recip-
rocal matrix. Systematic computation of S, Ag has just been
noted, the sums of squares and cross-products oceurring in the
normal equations for curve fitting {p. 136)are formed directly from
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Table 2 of the preceding section. Thus, the summation [FoF./L]
on page 136 is the sum of squares under the column of Table 2
headed Fo/+'L; the summation [F,Fy/L] is the cumulation of
cross-products under the columns of Table 2 headed Fo/+/L and
/L [FoFo/L] is the cumulation of cross-products under the
columns headed Fo/+v'L and Fo/+/L; cte. A

We shall suppose that the normal equations have been fornted
in this manner. The numerical values of the squares and Cross-
products called for on page 156 will be entered as numbers in*Rows
1,2, 3,4, page 138. On this page, the abbreviated sy:;ﬂi:gp[s

[aa] for [Ffa:l

[ab] for [F f j\\

foo] for , [%]

7 &”
s

L

ete., have been introduced forconvenience. The unit matrix in
the columns €y, €z, C3 is entered for the caleulation of the recipro-
cal matrix, and the sumns a6 the right are formed for checking. The
Gauss symbols [b ..‘(I,‘.[ccﬂ], ote., scen in Rows II and III, will
facilitate reference to certain entries later on, as in the exercises
beginning on page 161.

The solufion” procecds according to the operations of multipli-
eation aad addition indicated by the directions under the column
headed “How obtained.” The procedure-here outlined is similar
to .D:no ittle’s? solution, which in turn goes back to Gauszs.® The
. ehetek marks show the  sum check ™ at the pivotal points. The
‘normal equations on pages 82 and 83 were solved this way, Tur-
ther numerical examples oceur in Chapter XI. Note that A is
eliminated in Row II; 4 and B are both eliminated in Row IIL
The values of the parametcr-residuals appear in Rows 11, 12, and

13, in the 1”7 column.

2 0. H. Doolittle, Coast and Geodefic Survey Report for 1878 (Washington),
App. 8, pp. 115-115.

% Gauss, Supplementum Theorige Combinationis (GOttingen, 1828; Werke,
vol. 4), Art. 18



158 CONDITIONS CONTAINING PARAMETERS  [Sze. 61]

Row 11 comes by dividing ITI through by [ee.2] to get C.
Row 12 comes by substituting from 11 into II to get B,

Row 13 comes by substituting from 11 and 12 into I to get 4.
This is the “ back solution.”

THE NORMAL EQUATIONS AND THEIR BOLUTION

Unk}iwna
Row A B ¢ = 1 c Cs s ',\'s“wf
I fea]  fad) (o] [ao] 1 0 O Y
2 Bl bl [bo] o 1 <0y ...
3 [ec) [eo] G 0 SO v
How )
4  obtained [oo] 0 g\ " 0 Y
5 IX < | @ el _feolab WDy,
[a]/ [wal] laa] {aa] [aa] JT){E
H 245 Bbil ell  [Boal s w0l 0 ...y
‘,"’.. [eer]
[ac) '.':’:;
6 I —[ac)/laa)|— [ge] ~— R
o leal ™S
7Iix— 15&1)
Tbe.11/[bb.1]| = “""I.Iz@éﬁ o e 0
M 34647 [eS2] 02]  ee ... O,
2
8 IX —[ao]/{naf el [eo] 0
AN laa] [aa]
Yy [bo.1)? {b0.1]
0 II X0 1]/bh.1 - coe bl
x\\ﬁ?" Viph.1] 5.1] 5511
ol [e0.2]% [¢0.2]
10 —[¢0.2]/[ce. - e e B
m:“gl,x fe0-21/[c=-2) lcc.2] [c.2]
NV 4+8+9+10 8 e ey
13 Tsolvedford A c11 c12 €13
12 II'solved for B B o1 con roa
11 III solved for ¢ C €31 C53 Ci3 cenyf

Note. The ellipsis (-} in the tabular array denotes a space wherein a
number would ordinarily be entered in numerical calculation, but in which it
is not worth while to show the entry in symbols,
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The reciprocal matrix is set off in Rows 11, 12, and 13, in the
columns headed €, €2, Cs. The entries ¢y, €31, €31, in the €,
column are the values thai would be obtained for A, B, C if the

1
right-hand members of the normal equations were 0, as found in
¢ )
the €'y column, Likewise, the entries cig, 22, €22 in the Cs colubih®
are the values of A, B, C that would be cbtained for A, B, C if\the

0 £\
right-hand members of the normal equations were 1, ag f6éund in
A\ 3

the (5 column. Similar remarks hold for the enfries e13, oos, cs3
in the Cs column. The values of the elemenis‘of the reciprocal
matrix, in terms of the coefficients comprisipg the normal equa-
tions, are given in Exercise 2a, following t@s section.

Remark 1. Many variations of ‘thex procedure shown on
page 158 have been published. Hach possesses merits peculiar
to the machines available, preference of the operator, and
other circumstances. The ceamputer should be expected to
develop variations that afétadvantageous to the peculiar re-
quirements and conditiens under which he works, and te his
likes and dislikes. .\

Remark 2. &thods of solution cuite different from that
described above Rave been contrived, but not yet adapted to
mass produetion. Some of them are devices for caloulating
the recipfafal matrix to be used as a rultiplier, for example,
T. Smith's,* and a very promising scheme of matrix squaring
deyigad“by Hotelling and Girshick on the basis of a theorem
r%gaing the charscteristic equation of & determinant.’ Inan-

2 ﬁther direction there is Kelley and Salisbury’s® ingenious aceel-
£\ Veration of an iterative process ususlly known as Seidel’s (1874),
"\ though described earlier by Gauss and Jacobi,” the same being

)
N $T. Smith, “ The caloulation of determinants and their minors,” Phil.

Mag., vol. 3, 1927: pp. 1007-9.
b This was published by M. D). Bingham, J. Amer. Stal. Assoc., vol. 36,

1941: pp. 530-534.
8 Truman L. Kelley and Frank §. Salisbury, J. Amer. Stat. Assoc., vol, 21,

1926: pp. 281-292.
7 Whittaker and Robinson, Caleulus of Observetions (Blackie & Son, 1924},

Art. 130.
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partieularly cffective when good initial approximations are
available. Then there is a fascinating pivotal process invenled

by Aitken® in 1932, after T. Smith’s method; he has now,
however, superseded thig solution by the Introduction of 4
number of important unpublished refinements, Tt iz also
interesting to note that electrical circuit maehines, capable

of solving something like 10 linear equutions, practically instan-, 25\
taneously after plugging the coefficients, are in operation and
undergoing further development at several conters. .\:\

Remark 8. The reciprocal matrix contains the variancg “artd”
product variance coeflicients for the parameters o, b,c‘ Iis
use in thig connexion will be illustrated in Section 62,5,

Remark 4. The reciprocal matrix has also @ulother use,
namely, as a multiplier for finding the unknowgsn the normal
equations, in the same manner in which it wasNbed in Eqs, 23,
24, and 26, on pages 93 and 94. The the9ry of the reciprocal
matrix as a multiplier originated with, Gadss.® The essentials
of thig theory are contained in the exereises following.

The * reciprocal solution,” gotéen/by using the reciprocal
matrix as & multiplier, is a very se’qs:ii.ive indieator of instability.
It is just for this reason thagtthe reeiprocal solution is likely
to break down in the casepf near indeterminacy™ —a fact
that detracts rather dragtieally from its usefulness in the solu-
Hon of normal equa.t-iqns in curve fitting, where near indeter-
minacy Is surprisingly’ common. Near indeterminacy exists
when A, the dét@vﬁinant of the coeflicients, is very small.
The freesing of\the solution — the near vanishing of one of the
extreme leftygoetficlents (such a5 the entry [ce. 2] in Row III) —
is indicati®e"0f near indeterminacy, which is usually but not
always/@actmpanied by instability.

Vith regard to the source of near indeterminacy and the
remedy, Palmer™ gives this excellent advice. . . . I oceasion-

dlly happens that one of the equations is so nearly a multiple or

0"\: f\'A. C. Aitken, * On the evaluation of determinants, the formation of their
\aﬁjugates,” Proc. Edinburgh Math. Sec., vol. 3, 1932: pp. 207-210.
* Gauss, Supplementum Theoriae Combinationis Erroribus Minimis Obnozine
{Gottingen, 1826; Werke, vol, 4), Art. 8.
10 8ee a paper by the author in Science, May 7, 1937; alzo Henry Schultz,
The Theory and Mensurement of Demand (Chicago, 1938), pp. T61-3. Ap-
pendix C ean be highly recommended for techniques of eurve fitting.
1 A de Forest Palmer, The Fheory of Meamwements (MceGraw-ITill, 1912),

D. 77. This book, by the way, is one of the best on experimental science and
scientific inference,
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submultiple of another that an exaet solution becomes difficult
if not impossible. In such cases the number of observation
eguations may be increased by maling additional measurements
on quantities that ean he represented by known functions of the
desired unknowns.  The conditions under which these measure-
ments are made can generally be so chosen that the new set of
normal equations, derived from all of the observation equa-
tions now available, will be go distinetly independent that the
solution can be carried out without difficulty lo the required ¢4
degree of precigion.” , \ N
Remark 5. An Important consideration in the spll}:tién
of equations is the maximum error in the values found forithe
unknowns — mezimum error, not just the average dr standard
error — arising from errors in the coefficients, Tuckerman'?
shows a simple procedure by which this maximinierror can be
determined. N

A\

P
NN

EXERC[:}ES: %
Exercise 1. () The detemai'r,iﬁrit of the coefficients of the
normal equations on page 158.€2n be evaluated as

aal, (fwb] lac] |
[aB] [5D]  Tbe] | = [aa] [Bb.1] [cc.2] (12)
|Gl B fedl |
NS
which is to ¥ that the determinant A is the product of the extreme
left numbers in the Roman-numbered Rows I, IT, 111, This result
is impértant, because it shows that in near indeterminacy, Le.,
whentA is small, one of these factors on the right will be small.
"Fhe so-called phenomenon of freezing {the vanishing of [bb.1] or
\65.2]) is thus associated with a small determinant, which usually
but not always gives rise to instability. (Sce the reference to
Tuckerman below.)

A=

Hing: Chio’s pivotal expansion will be found admirably
suited to the demonstration of Eq. 12. The work might pro-

121, B. Tuckerman, Annals of Math. Stutisties, vol. 12, 1941; pp. 30673186
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ceed as follows, the pivot element being unity in the upper
left corner.

[aa] [ab] [oc] t [% %EIJ
A= [abl 1661 {ocl | = laaly 0 i g
lac] {8l [ec] lec] [B] e .
. (g ) KN
[be} — [ac] ad] [ec] ~ [ae] [ac] "‘
[an)] [aa] '\\
[B5.1] [be.1] :
= faal ~ o) 1% )
] el o] — fad] D
LBell oo
~ woil O
= [aa] [55.1] [ac]

[be.1] [cfi]:—[dc] [_50;]
= [aa] [65.1] [ec.2] 8%
(b) Show that none of fhe extreme left entries in Rows I, II,
and III can be negativ \‘(H int: Make use of Sec. 29, Or, use the
Schwarz-Christoffel 4 in&uality.)

Ezercise 2, ’.I‘hé}ffatrix reciprocal to A can be denoted by

. '\n
N\ ti1 €1z 63
9, -1 _
,\\“' A7 =y cap con (13}
R\ €31 €32 633

(@) Show that the solution of the normal equations with the
(ﬁstant columns €y, Cy, and € leads to the values

o = cof. of [aa) s = cof. of [ab] ' _cof. of [ac] ,

.l11 _A- — 12——'——“—-——A H] 013————'—'--—A
cof, of [ab] cof. of [bb] cof. of [be)

031=_T——’ 022=‘———A——*-’ Oog = ————?

A
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cof, of {ac] _cof. of [be] _ cof. of [ce]

& = g =
31 A Caz A ’ L33 A

The abbreviation cof. denates cofactor.

Since A falls in the denominator of each element, a small value of
A, near indeterminacy, results in high standard errors of the/\
parameters; sec Exercises 2a and 126 of Chapter X.

{(b) lee the determinant A of the coefficients, the remgmchl
matrix A1 ig gymmetrical, Ie €13 = €21, C13 = €31, Caa = Ogo.

(¢) The matrices A and A™* are also alike in another respect —
the terms on the main diagonal will always be positive)

(d) Show that ¢zz = 1/[ec.2] = the reciprocal éf\he coefficient
of the third unknown in Row III. O

Exercise 3. (a) Combine Eq. 17 on p{g; 57, and Egs. 10 on
page 136 to get N\

— ool — [aold_<\BOIE — [eclC 1)
] [eb] lad] [ao]
{ab} [6b] [be] [bo]

\\ dac] [bd [ed] [eo]

[@o] [bo] f[co] f[oo]

Show also that

(15}

¢
£ )
x'\"'
7\

lea] fab] [ac]
[ab] [50] [bc]
la] o] [ec]

. ;.."I}int: Expand the numerator and get
~O (] [oe] [ao] , loa] [ac] lao]

[68] [be] [Bo] {b] [be] [bo]
[be] [ec] [eo]

1
S = —faol e 4[] ol Tod ol ] [‘f leo

foa] [ab} [ac]

ob] (] ool

e B ol
A

C
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which reduces to Eq. 14 when it is observed that the coefficient
of —[ao0] iz none other than A, the coefficient of [bo] is — B, and
the coefficient of —[co] 1s €.

(&) Prove that the extreme left entry in Row IV of the solu-
tion exhibited on page 158 is actually S. Thus, the minimizged
sum of squares of the residuals comes sutomatically in the routing,
of the solution.

7 '\‘ A
(¢) Show also, by noting how Rows 8, 9, and 10 are formedy that
§ = [00] — [aald""? — [pb.1]B2 — [ec.2]C% .\ (16)

where A”' = [q0]/[ag] = the value of 4 that would béobtained if b
and ¢ were fixed (not adjustable) at the V&Iﬁ}s bo and ¢,
and wherein also B = [50.1])/[bb.1] = the valued 3 that would be
obtained if ¢ were fixed at the value ¢, but g,xam\d b both adjustable.

Remark 1. "This result sheds a singula:i-}lega.nce on the form
of the solution exhibited on page 158 N The term foo] seen in
Row 4 is the sum of the weighled sglares of the residuals ealeu-
lated under the assumption that™e = aq, b = by, ¢ = ¢g (see
Exercise 3 of See. 58, p. 145). ¢ ‘e three negative terms in the
*1% column of Rows 8, 9pand 10 on page 158 are precisely
the amounts subtracted i¥om{oo] by the terms on the right of Eq.
16, and in the same ordpr.® That is 1o say, by the routine solu-
tion outlined on p%;%él:’;S there will appear (1°) in Row § the
reduction in weighted squares that is brought about by allowing
@ to be adjustable while b and ¢ are fixed at by and co; (2°) In
Row 9 the fukther reduction that is accomplished by allowing &
to be adjl%t&ble while ¢ is held at co; and (3°) in Row 10 the
final redugtion that comes from allowing ¢ o be adjustable, the
ﬁt%ﬁ being the minimized sum of weighted squares, S, in

s\ Alter a solution has been carried out upon the parameters a,
b, ¢, the question often arises, what would have been the result
. for Sif the parameter ¢ had not been adjusted, It had been
fixed at (say) v0? Now if this v is not too far from the finsl
valie of ¢, one need only add {ee.2] (e — v4)2 1o 8 in order to see
what would have been obtained for § had ¢ been fixed at v, (see
Examples 1 and 2 of Chapter XI). The value of a2 (ext) would
then be 8 + {ec.2](c — ~v4)? divided by n — 2, not n—3 (n =

the number of points).

Under certain conditions, the restriction that voand e be not

far apart can be removed; the polynomial y = g + br -+ cx?
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with  free of error is an example. It all depends on whether
the parameter ¢ enters the L factors of Tables 1 and 2 in Section
60. If it does not, then no matter how wide the dlspanty be-
tween ¢ and vy, the term [cc.2](e — yn)? still represents the inere-
ment in 8 that would be brought about by adjusting ¢ and b to
the condition ¢ = 4.

In like manner, and under similar restrictions, a term
(b — B/ ees will represent the increment in 8 that would be « N
brought about by adjusting @ and ¢ to the condition b = 8y,
(gee Hoxercise 2d). A

Similarly, the twe terms [55.1] (b — B5)? and lee.2] (c —#n)*
added to the § found in Row I'V will give what would have béen
obtained for 8 if only ¢ had been adjusted, b and ¢ ﬁxed‘at Bo
and vyp. In this circumstance, #2(ext) would be conipiited with
n — 1 degrees of freedom. \

It is important, as & practical matter, to noté that the coeffi-
cients [bb.1] and [zc.2], needed for these ingrenjents, are afready
at hand, numerically, in Rows I1 and 111 ,Q the ﬁnished rolution,
page 158, \®

Remark 2. In both parts (¢) and?(e), § is shown as three
terms subtracted from [oo]. Ey’idently

[ea]ld + [bo]B -+ [eo]C {aa]A’ 2 4 [65.1]B'2 4 [c6.2]C2
{d) From Eq. 16 1t follcms that if ¢ be changed by the smount

éc, while a and b remaip(fixcd, the change 33 in the sum of squares

i the relat] )
oheys the relation N\

38 ( ac )2 (17)
A/ 0! S.E.ofc

Exercgfsé;}.” Prove that the solution for 4, 53, and C found from
the “.N’"éolumn will also be given by the equations
,\f N A = [eo]ery + [bo)ers + [e0)ers
\m ‘; v = [a0]csy + [bOless - [cOleas (18)
= [a0]ca1 + [boleaz + [coless

This mothod of finding the unknowns A, B, and C is called the
reciprocal solution because the reciprocal matrix is used as a multi-
plicr along with the constant (* 1) column [¢0], {bo), [col. The
reciprocal solution is particularly useful when the same coeffi-
cients, hence the same reciprocal matrix, are repeated over and

— —
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over from one problem to another, but with & new constant eal-
umn for each problem, and hence with a new set of values for 4,
B, and C each time. See, however, the reference to difficulties
that may be encountered in near indeterminacy, mentioned earlier
in this section, also in Example 1 of Chapter XI. Theoretically,
the direct and reciprocal solutions should agree, and they will i
the computer carries enough decimals.

O\
In matrix notation, the results of this exercise can be ek

pressed ags L N

Av=H" N

<

where A is the matrix of the coefficients of the unerw;ﬁs.
\ [ao]'
H is the matrix of the “ 1 column, n{mely, fbo]
R )
and \ A
v is the matrix of the three unkfig¥ns, namely, B
The solution of the above equa‘giqn:iél
v -;};A"l H
To evaluate A™? we set e )
A ci=}1 (the unit matrix)
S
Having nowy the'matrix A, we use it as a multiplier with & to
find the mathxs from the relation above, getting v = ¢, ‘This
is the m#frix expression for the results stated in the preceding

e’xerQ'sﬁé::\.’For lustrations of the reciprocal solution see Sec-
tior'86 and Examples 1 and 2 of Chapter XI.

E@r’éﬁse 6. Prove that the values of the determinants A and A™?
drereciproeals. (A and A™! defined on page 162.)

Ezercise 6. (a) If = r cos ), ¥ = r sin 8, the two Jacobians
as matriees, namely,

and find

d_ﬁ:gi_y_ dr daf

dr dr gx"a":
and

dr dy ar o8

48 df dy 3y



[Ce. 1X] COMPUTATION FOR FITTING CURVES 167

are reciprocals of one another; i.e., their product gives the unit
matrix

10
01

(b) Show that a similar relation exists in three dimensions,

In the derivatives taken with the symbol d, § is constant
while =, ¥, and r vary, and again 7 is constant while =, ¥, and # /A
vary. Inthe dertvatives taken with the symbol 3, x is constant.
while 7, 6, and ¥ vary, and again y {s constant while r, 8, an
* vary. £

62. The weights of the parameters; their sta dard errors.
The standard error of a function of the parameters he standard
errar of a curve, It is a fact'® that the reciproeals of the weights
of the parameters are found on the dlagona{ ‘ob A" (see Exercise 2

of the preceding section), i.e,, - NS
1 LY 1
Wy = ——r wp =3 W, =— (19
€11 N {322 C33
where ™

N

¢117 = var. coeff. of q, Cg{é var. coeff, of b, ¢33 = var. coeff, of ¢

Then, since weights a{éé reciprocals of variance coefficients (p. 21),

0’02"=:(5110’2 f 0'1,2 = 0220'2, crc2 = 6330'2 (20)
or :‘:\ g
D7 B E ofa)? =y
’\ 4 ( g b)z = 6220’2 21)
,: ( TE] 0)2 — 6330'2 )

m\Létf be a funetion of the parameters, Then

fé = (faa'a.)2 + 2(fefiraroams +fafcfac':’aac)
+ (fooe)® + sferneovee + (fooo)*  (By Eq. 7, p. 40)
= o{e1fo? + 2erafufs + 2618fafe + ool
+ 2eo5fufs + c33f’} (22)

13 The theory of &ll this goes back to Geuss, Theoria Combinationds, Art. 21.
An excellent reference is Whittaker and Robinson’s Colculus of Observations,
Arts. 121-123,
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As in Scetion 13 we write for the unbiased estimate of ¢® by
external consistency,

o2 {ext) = %: where k=n—1p

n being the number of points and p the number of adjustable,
parameters. When ¢ is not known from any better source, this
estimate may have to suffice, and o2 (ext) would replace o® \ii}Eqs.

21 and 22, giving respectively e
(Est'd 8. E. of @)® = ¢17 o2 (eat)
( 1] [T b)i? Caa 0,2(emt) '
( 14 [T 6)2 = (a3 0'2(62&5)' )

&ﬂd 5 xi\\:
R4
(Est'd 8. B. of f)? = o®(ext) {11 .2 'l’:"zfl?lbfc&fb + Zeiafafe
+ caafe™+ 2eamfefe + casfst} (24)

The student ia urged to s.tl}léiy'Chapter V of R. A, Fisher's
Statistical Methods for Resegich Workers, wherein examples of
the manipulation of thereciprocal matrix will be found.

¢ (23)

63. The error ban,dﬁz\associated with a curve. Rejection of
observations, Whéh'we write
@ v=[ a0 (25)
and agk fpr',‘t;he standard etror of g, we are mercly asking for the
standard{eiror of & function of a, b, and ¢, but not of x; conse-
quently)we can apply Egs. 22 or 24 af once. x enters merely as
a colstant.
“\The distinction between Eqgs. 22 and 24 is that, in the former,
¢ is supposed to be known or approximated closely enough, under
eonditions of randomness, as from provious expetience, or from
internal consistency (Sec. 13), or from any other source that does
not depend on the way the particular points in question fit the
curve. In Eq. 24, on the other hand, ¢ is estimated from the fit
of the points, as was explained in Section 13. Iig. 22, when applied
at abscissa z along the fitted curve, gives the standard error of the
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curve for that particular abscissa. If this calculation is made for
several abscissas, one may plot points along the standard error
band. Error bands are plotted to show one or more standard
errors above and below the fitted curve. In Fig. 22 (p. 228) the
band shown is -+1.96 standard errors. This width of band would,
on the average, leave b percent of the points outside the band if
the coordinates were distributed normally about their true valueg'\
with standard errors ¢/4/w; for  and o/ w, for y. Sometimes
the * probable error * band is drawn,'* or a multiple thereof. ™)

When o is estimated from the fit of the points and used in\Eg. 24,
one obtains & confidence band for the curve, A coqﬁdéhce band
is different in principle from an error band only inatsing o (ext) in
place of a presumably better known value of .- XThis, however, is
often an important difference, because, although o itself is sup-
posed to be constant, the external estimate/©f.# will vary from one
experiment to another, even in randomﬁcéé, unless n — p is as
large as 20 or preferably 30. The @idth of thc band may be
adjusted to give various degrees,pf’..“ confidence.” This is done
by using an integral of Studeng’slistribution, which is easy to do
by looking up the corresponding value of ¢ in Fisher’s tables®® for
1 — p degrees of freedom Thus, to compute a 95 percent con-
fidence band, one wowddslook up %5 In Tisher’s table, and then
compute {¥ — y| foR‘iféVeral values of 7, using the equation

" ¥ —y| '
) ::.\ %5 = Estd 8. E. of ¥ (28)

4 A prgBable error, for normally distributed observations, is 0.67 times the
'standa;\\gfror. For ather distributions, some other factor iz required, but
calculations are ordinarily made with the factor 0,67 for which £ is a close
eneé.igﬁ"a.pproxjmation. Birge uses the probable erre: band slong with his

““atirves. ‘The following papers of his are recommended for their scientific

\ insight, and for simple derivations of the standard error formulas: (2) Physical

Review, vol. 40, 1932; pp. 207-261; (b) Amer. Physies Teacher, vol. 7, 1939:

pp. 351-357. )

155 A Nekrassof’s very handy nomograph may be used. It was pub-
lished in Metron, vol. 8, No. 8, 1930, and is reproduced in W. A. Shewhart’s
Economic Contrel of Quality (Van Nestrand, 1931), p. 490; see also Deming
and Birge Statistical Theory of Errors (The Graduate School, Department of

Agriculture, Washington, 1938), p. 136.
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The distance |¥ — y| laid off above and below the curve defines
points on the confidence band, and the result will have the appear-
ance of Tig. 20, (The capital ¥ used here is not to be confused
-with the same letter used in Fig. 17 and elsewhere for an observed
coordinate. )

.

)/’ s -

S/ Mox
5 »:’

/ N

~

Fra. 20. A fitted ourve and-fhe' corresponding confidence band. An error

band i laid off in like m@r as a multiple of the standard error of the fune-
tion, and has 4 similsr appearance, .

Remark 13, ‘Aconvenient reference showing the application of

Eq. 24 to'('&urire fitting is a paper by Henry Schultz, J. Amer.

Stat. Assaé, vol. 25, 1930: pp. 139-185. Sehultz shows curves

and coofidence bands of width twice the standard error of the

curye for several kinds of curves. It should be mentioned, as
Schitlts does, that all these things were well known to Gauss and _

\ &hers.in his time, but that they did not take the trouble to write

./ out the formulas explicitly and draw the graphs for all the things

* that interest us today. . . .

Remark 8. Tt must be remenmbered that, even in a state of
randomness, & new set of points (i.e., anew experiment) will give
& new curve and a new set of parameters; hence, curve and error
band, will be shifted to a new position by a new experiment.
Moreover, since the external estimste 6f ¢ will fluctuate from
one set of data to another, then not only will the curve and con-
fidenee band be shifted to a new position by a new set of data,
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but the width of the band itself will also be different. This is
one of the reasons why a single experiment, without considera-
tion of other knowledge, is not a basis for action, particularly if
the consequences of the wrong action are hazardous (ef. Ch. T).

Confidence intervals for apy other function of 2, b, and ¢ are
made up in like manner, and similar remarks apply.

The purpose in drawing an error band or confidence band is to »
invoke statistical aid in detecting spurious conditions in the data,
or, more precisely, in the experimental conditions that gave rigé b,
the data. A point that lies outside an error band of width §%0 or
three standard errors should be investigated; but it issaybe dis-
carded, and the curve refitted, only if investigati6h® discloses
anomalous experimental conditions at that pointm?thther one
uses a band of width two standard errors or thrée'standard errors
is a matter that can he decided only by persgnal preference and
experience in a particular line of work. The'wider the band, the
fewer the points outside it, and on this griterion the less likely one
i to look for experimental difficultiesy .On the other hand, if the
band is too narrow, one will look for experimental difficulties too
often — that is, he will be lookizig for trouble too often when there
is no trouble.’® Many papers and chapters have been written on
the statistical rejection of, @Dservations, but the best practice seems
to be contained in hQ‘«s’ha,tements just given. In summary, @
point is never to be xchuded on statistical grounds alone

18 These thought; follow the reagoning expounded by Shewhart in 1924
when he int.rolece’d the control chart. The student of modern statistical
theory will ;eégignize in them the arguments inherent in errors of the first and
second Idndg-

7 R.A, Fisher, ©“ On the mathematical foundations of theoretical statistics,”
Ph;’l\'T?&ns. Royal Soe., vol. 2224, 1922; p. 322in particular.

N\,

\‘:
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EXERCISES AND NOTES
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CHAPTER X & O

~

EXERCISES ON FITTING VARIOUS FUI{\C:fIOi\TS

64. Purpose of the chapter, The exercisessand notes in this
chapter will serve two purposes: Jirst, to previde practice in
forming the normal equations for variou “functions commonly
met in practice; second, to provide & ’éornpendjum of results,
handy for reference. Onece these exerelses are mastered, other
functions that arise in practice shqujﬂﬁ Present little or no difficulty.

A special note should be m:cié ’&)ncerning the fitting of poly-
nomials such as N

y=a+??;;;,<y=a+bx+csc2, eto.

L 3

When 2 35 free of efedr ind uniformly spaced, certain shorf-outs,
eminently wortlivghile learning if the problem is to ocour fre-
quently, are pravided by the use of orthogonal functions. Since
good referepeeare accessible, the subject need not be treated
here. Thednethods shown in the following exercizes will work
under ¥&r¥ goneral eonditions. But if & polynomial is to be
ﬁtteei&g’ain and again when x is free of error and equally spaced,

the reader is advised to learn tho method of orthogonal fune-
,ens.  The theory is coraplieated, but the application is not.
#\WThe following list of references will suflice for clear deseriptions

N/ of several different procedures:

L R. A, Fisher, Statistical Methods Sor Besearch Workers
{Oliver & Boyd); scctions 28, 28.1, and 29.2 in the 6th and
later editions. Fisher'’s procedure and his description thereof
have justifiably found great favor.

2. R. A. Fisher and ¥rank Yates, Statistical Tables for Bio-
logicl, Agricultural, and Medicql Lesearch (Oliver & Boyd,
1938}, An extension of these tables has recently been pub-
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N

\‘;

to be fitted to n points,  free of error,

lished by R. L. Anderson and E. E. Houseman, Tables of
orthogonal polynomial values extended to n = 104 ¥ (Ames,
Research Bulletin 297, 1942).

3. Raymond T. Birge and John D. Shea, “ A rapid method
of ecaleulating the least squares solution of a polynomial of
any degree” (University of Californic Publications in Mathe-
matics, vol. 2, No, 5, 1827, now unfortunately out of print).
This procedure is rapid and possesses great merit. Up toa
certain stage it seems to be equivalent to Harold T. Davis’
method, but beyond that stage the remaining work is simpler
than Davis, and requires fewer decimals. O

4. A. C. Aitken, Proe. Royal Soc. (Edinburgh), vol. 53, 19(3?;—
1933: pp. 54-78. a3

5 Max Sasuly, Trend Analysis of Statistics (The. Brook-
ings Institution, Washington, 1934). G

s\
65. The line! {0’

In the exercises that follow, the symbdls 2], [z2], [2y], [aFal,
and the like, refer to summationseformed with the observed ¢o-
ordinates. Moreover,  and 7 J¢fer to the mean values of the
observed coordinates. The, distinction made in Chapters 1V,
VII, and IX — capital lettars for observed coordinates, and
emall letters for the adjuéted coordinates — can now be dropped.
In this chapter and themeéxt, it will be convenient to use capital
letters to denoteﬁfg’mithms (Y for log ; ete.). When there
geems to be spacialneed of distinguishing observed from caleu-
lated coordipates, the subseript obs or cale will be affixed. In
the numeri¢al’ evaluation of the derivatives, and of W or L
(Tableg’dand 2 of Sec. 80), if # and y are called for, their ob-

o"wilues are to be inserted, along with the approximate
fli&ﬂ"ﬁnations ag, by, ¢o for the parameters.

:E:;:é}'cz'se 1. (@) Given the line

y=a+bz

weight (unity). Here we take

! The lice ¥ = bz,

F=y— (a+bs)

wag discussed to some extent in Section 5.
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all y coordinates of equal

forced to pass through the origin (i.e., with ¢ =0},
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The derivatives are

Fo=-1, Fy=—¢

Fy= —b (notneeded here), F, =1

L =1 (Why? BSee Eq.8, p.134.)
With the approximate values g, and by we compute A o
Fo = yoba — (@ - box) A 2

at every point. Since L = 1 at every point, Tables <1~’Eafnd 2 of
Section 60 coalesce, and the normal equations are segri; $0 be these:

RBow 4 B = 1 [#5% Cs Stiwt )

R
I n [] —[F] 1 0 O ]
9 [22] — (5] 0 1,,x\ ' (Set 'lé IE;xer-
3 [FoFol 0 (QY c1s

(b) The solution for 4 and B, fend by the routine of Section 61
or any other method of solutionis
AN [Fol
AL EY _gp
el

3

O

N g o ekl + 2l
&~ 2
where \
'S nug = [xz] — nF?

Topy 18 jﬁ&eeond moment of the x coordinates about an axis paral-
lel t0\0y and passing through the centroid z, 7
\'"‘Q,c*}' The adjusted values of ¢ and b turn out to be

a=ay— A =5 — bz

b=b~B=yE=NG -9 _ byl -5
pio Trity
The fitted line therefore passes through the centroid Z, 7. But

note that when there is error in both z and y coordinatbes at some
or all of the observed points, the weights being such that w,/wy is



[Cr. X] EXERCISES ON FITTING FUNCTIONS 175

not conatant throughout, the line does not pass through the cen-
troid (see Remark 2 in Exercise 4).

(d) The solution just found for & and b is the same as would have
been found from the normal equations shown below as Set 2, in
which the unknowns are the full values of ¢ and b. In this prob-
lem it is therefore permissible to take gp and by both as zero, where-,
upen Fy is simply Yoss.

N

Row b o= 1 i 0 Bm AP
I 1 0. Yy

2 [z (zy] 0 1 S (et 2’1

3 ] 0 0 ,{Fxercise ]

AN

Note that a calculation of Fo is required at\every point in
forming the normal equations of Set 1, but net\for the formation
of Set 2, because in the latter, Fg is the samelas y5,. However,
in Set 1 it is only the residuals A and\&\that are to be solved
for, the main part of the adjustmint’bhaving already been
allowed for in fixing the approxzimate values ag and by, It is
different in Set 2; there the unknowns are the full values of @
and b, requiring the compytérito carry more figures. These
additional figures usually ‘migre than offset the time required
for computing Fy. It{therefore is usnally advissble to find
good approximationg@\nd use Jet 1. The better the approxi-
mations, the fewef figures required. Birge and Shea make
uge of this prmﬁe in their method of fitting polynomisals
{mentioned jn\the preceding section).

(e) Whe tf;g solution of either Set 1 or 2 is carried out accord-
ing to the-sdheme of calculation exhibited on page 158, the extreme
left en"tbt“in Row III will be the minimized sum of squares S, or
> (Wops — Yeate)?. The sum of squares removed from [FoFo] in

_SetyT, and from [yy] in Set 2, by the successive adjustments of a
\a-‘zﬁi B, appear in the extreme left entries of Rows 5 and 6. Show
that
8 = [yy]l — nF® — nud®

the last term heing the sum of squares removed by allowing the
line to have slope b instead of slope 0 — in other words, the sum of
squares removed by regression. The two terms nj® and nugb®
appear in Rows 5 and 6 of the solution of Set 2,
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(f) If V denotes yobs — Yeare at any point, the solution for g
and b renders 20 V' = 0. (But note that ncither ¥ V nor o wV
is necessarily zero in least squares solutions; it only happens to be
s0 here. In fact, in Sec. 152 we saw & simple example wherein
neither 2. V nor 3 wV was zero. Sce Remark 4 in Excreise 4;
see also Exercise 5.)

Ezxercise 2. (a) The reciprocal matrix for the normal equatigns
in the preceding excreise appears in the € and C, columuswof
Rows 7 and 8 (these numbers refer to the solution of the eqigtions
solved according to the form on p. 158). It turns out to'be

=2 - %7 )
1,2 2 &
no Mg Ttz '
-1 _ \
AT = AN
T E &
Ny iz

(b) From the upper left and lowgpitigilt elements of this array
we may say that ™

N

The weight of'g = ——

14 2/
The@ight of b = nyy

Thus, if the experiniental conditions were random, our confidence
in b would increaf€ms the  spread ”” of the points increases, Is
this reasonable?\"Why docs the weight of @ depend on 7?
@ NOTG E of a2 = 21/ + 2 /ngs)

O BB of b) = g,

Notg that the weights and standard errors of @ and b do not involve
the iy coordinates of the points. Compare with part d of the
next exercise. Note also that the denominator of the last fraction
is equal to A, since

# [z
[z] [x2]

hence near indeterminacy (a small value of AY is clogely associated
with large standard errors of a and b, and a, rapid “ fanning out ”’

2

Ropg = = A
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of the standard error of ¥.qr each side of %, § {see the next part;
alse Exercise 2a of Sec. 61).

(d) From Eq. 8, page 40, and the reciprocal matrix of part (2)
of this exercise, prove that the

@ — 5)2}

M2

2
(S. . of Yoare)? = "’;{1 +

Thua the standard error of g.az. is least at the center of gna\\?ity
(%, 7) of the points, and fans out each side of it.  (See Sec 63 and
the reference to Henry Schultz; also Figs. 20 and 22.) .

(¢) The standard error of the calculated line of Exermse 1 at
the center of gravity is ¢/+/n, as it would be for‘n “Observations
made on a single unkoown. (Do this in two ways: 1°putz =%
in part d; 2° put = 0in part ¢ for the stand%rd error of a.}

Ezercise 8. {(a¢) Carry out the solutwn\@f “the normal equations
of Exercise ia in symbols, following the' ottline given in Section 61,
and show that the minimized valug of 8 or of X (yos — Yoate)?
¢omes in the “ 17 column of Rew III (which will be the extreme
left entry in 111). The sameds true if the approximations ap and
by are used, as is advised i Fxercise 1d.

() Show that the mimmlzed sum of squares in this problem
can be written \\ -

L res® = L r%)s’

where , 1:'\
D e -ne - . .
%ﬂr =¥ ———=~2 2% — the correlation coefficient
£ N85y
ang. .
N ns? = [yl — nF

nsg = [zx] — nE

(s.2 is here used in place of s for consistency with sy.)

(¢) The estimate of « made from the fit of the line ia

n(l — r2)s,”
n

- (See Sec. 13)

a?{ext) =
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@) The ]
1— 72 z
1 2 _ 2
(Est’d 8. E. of @)* = p— (1 + s-?)
1—172 52
H 2 _ i
(Est’d 8. E. of b)? = P 2

N\
Note that the estimated standard errors of ¢ and b involve' the'y
coordinates; compare with part (c) of the preceding exelici\éé.".\
(¢) The U
1— % —(BY
(Est'd 8. B. of yaze)? = —— 5,2 { 14 &2 2"’)‘2}
— 2 m'\sr
Ezercise 4. (a) If both z and y coordinated aré:subject to error
with varying precisions at some or all of ihen points, one must
perform the caleulations called for in Tabfeé'l and 2 of Section 60.

. X

For the line AV
y=a+tpbe.”
one may take - N

F 2y —a— bz
Some good approximate &alues ap and by having been found, one
can then ealeulate th(mimerical value of

(NY'0 = Yobs - (ao + boZots)
at each of the qfi}ia’oints. The derivatives of F are
FD= —b, F,=1, Fo= 1, F,= —z

where.uﬁ}nw.
N EE |
. L = = + —_—

,‘.\: 7 W, wy

E varies from point to point with w, or w,,.
The headings for Table 1 of Section 60 would be these:

k, or Point No. Wy Uy L VL Fp = —z Fq

(It is not necessary to tabulate F, F,, and ¥, since they remain
constant from point to poeint.)
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The headings for Table 2 of Section 60 would be as shown below,

B, or Point No. Fo/vL = —1/VyL Fy/NL = —z/yL Fo/yL Sum

It has already been remarked (Remark 3, Sec. 54) that there
is some theoretical advantage in writing W in place of 1/L,
though it is a fact that with machines having sutomatic division
and two dials for quotients — one for the individual quotients
needed for Table 2, and another for cumulating the quotients )\
across the rows for the “ Sum " column of Table 2 — there may
be a praetieal advantage in tabulating + L rather than +f #\in
Table 1, and using divisions by + L, rather than multiplications
by + W, to form Table 2. ?

Writing now

AL P

-\ Ny

W ow wy \:.

we see that W = w, if x is free of erroxor if b = O (see the next
exercise), and W = w,/b% if y is fres of error, but that both terms
are required if z and y are both subjedﬁ to varying errors, and if the
line is inclined so that b is not small (see Exercise 8b).

Tn terms of W the headings 0f Table 2 might be these:

4, or Point No. , 'sz‘\ —p W + Wy Sum

(5 The normalequations are formed in the usual way by sum-
ming squares,dnd’ cross-products from Table 2. They can be
symbolized,g8.shown in Set 1.

oy, &

Row .%\'"' B = 1 €1 € Sum

I 3w e - IWF 1o

20 Wez)  —[WaFo 0 1 Exerose 4
3 _ [WFFg) 0 0 .

The systematic solution of the normal equations (shown on
p. 158) gives A and B from the “ 1 column, and the reciproeal
matrix A~! as usual from the ¢y and C columns. The adjusted
values of & and b will be
ap — A
by — B

‘a =
b=
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The systematie solution gives the minimized value of 3 (1, V,2 +
wyV,*} in Row III, eolumn “ 1.” That portion of the sum of the
weighted squares subtracted from [WFoF;] by shifting the first
parameter from ¢g to ¢ appears in Row 5, and the portion further
removed by shifting the second parameter from b, 1o b appears in
Row 6 (see Exercise 3 of Sec. 61; also Exercise 1 of this section) .

Note that ap and by may be taken as 0 (with the Necessary
increase in the number of decimals required in the normal gqua-
tions), so far as Fy is concerned, in which event F, becomes Bimply

Fl'):yoba NG

The normal equations are then symbolized like tho%e"follow'mg,

Row 14 b = 1 ¢y Cq b\}m

I (W [We] Wy 1 8 ot 2

2 (Waz] 4 [Waxyl LI o
3 (W) 00 Pxercise 4)

and the solution gives @ and bdirectly. Why are more decimals
required in these equationgthan in the preceding ones giving the
(supposedly small) residuals’ 4 and B?

“But note carefully $hat’an approximate value of b must be used
in the calculation of ¥ at each point where » is subject to error.
by may be called(®,in the caleulation of Fy (as noted above) but
not in the caleulation of W. If this admonition is disregarded, the
effect of thesspeighting of x &iost. " In fact, if it turns out that the
approxigkté value of b used for caleulating W was too far removed
from thigfinal b, it may be desirable to make a second adjustment to
seetite improved weightings W, which can be obtained by using the
value. of - b-from. the first adjustment; but this is seldom. found
necessary in practice.? . :

£

* As Gauss put it, in & somewhat different problem: “ Quodsi dein ealeulo
abeoluto contrs exspectationem valores incognitarum p’, ¢, 7, s, etc., tanti
emergerent, ut parum futum videatur, quadrata productaque neglexisse,
elusdem operationis repetitio (acceptis loco ipsarum m X, p, o, ete., valoribus
coTrectis ipsarum p, g, 7, s, ete.) remedium promtum afferet.” Theorie Motus
Corporum Coelestium (Hamburg, 1800), Art. 180,
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Remark 1. Of course, it may happen insome particular prob-
lem that b actually is very emall, and that 0 is therefore & good
approximation for . In such circumstances the line is practi-
cally horizontal, the weighting of © does not matter much, and
the computer may as well simplify matters and set W = 1p,,
ignoring the Weighting of # — not because x Is free of error
{i.e., not because w, is infinite), but beeanse b is zero or nearly
g0. The student should ponder over the situation where b is
actually known to be 0; do the values of z count at all in the
solution? Does this not take us back to the simplest problem, SN
in curve fitting, seen in Seetion 10?7 The sclution obtamed
there can be translated to the needs of the present ciroum?®
stances by Interchanging z and y, and rewriting Eq ~10‘0n

page 19 to get
_ 2w ."".\

v
then rewriting Eqs. 12 and 12/ on page 21 ,‘rxi‘g\aﬁ
- N
W = zwx
and the W
[ '?’;"L
(8. I 0?‘}):‘ To

In all these equations, w nows denotes the weight of 7, not z.
Remark 2. When z@nd'y are both subjeet to error at some
or all of the obseryedipoints, the line does not pass through the

center of gravity
) fw] . Tywl

N7 TRl VT
But thg\ liﬁe"will in any case pass through a guast cenfer defined
as )7
R oW W
R\ S VT
\\ " Remark 3. With 1/W written in place of L, Eq. 8, page 134,
gives
1 _Ff, + Fully (Cf. Remark 3, p. 135.)
W Wy Wy

Ag has already been seen, the first term drops out if x is free of
error, and the second term drops out if ¥ is free of error. To
make the change from a solution in which x 18 free of error to
one wherein both ecordinates are subject to error, we merely .
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add the other term in 1/W and recaleulate W at every point,

the procedure being otherwise the same. There is a close

analogy with celestial mechanics; when one wishes to com-

pute the orbit of a bedy of mass m about another of mass M,

he may at first make the simplifying assumption that M is

infinite (i.e., immovable), and solve the equations, later replac-

ing m by u where Q)
1 1 1 R

Tty )

£ om
'\
This replacement yields the absolute motion of the two bodies,
neither being of infinite mess (ie., neither one immoyvahia).

Bemark 4. When « and y are hoth subject to efrer at some
or all of the peints, we can not always assert thit

Z Vz = 0, or z Vy = 0! or Z (szw‘_I_ wyvy:' =0
o \4

though these may sometimes happen, a8 Exercises 1 and 5,
q-v. We have already seen a simplglekample in Section 15,
where these summations were not zéro.  There is, however, a
property of least squares by which\cne can always assert that
after the adjustment,? anY

p> (wxvzlf;f’-al’wyvyv,,) =0

{For definitions of I, 'e“tc., see Figa, 16 and 17 on pp. 182 and
133.) e .

Bemark 5. It\}s\interesting to note that in the routine solu-
tion of Set 2, the:minimized § appears in the cxtreme left entry
of Row IIL(But that, in contrast with Set 1, unless the final
value of,gig actually or very near 0, the entry in Row 6 directly
above. S will nof show the increment in S that would result from
fixing\b/at either ihe value 0 or b, The reason is that a good
vg{l}e of b must be used in W at each point where z s subject to

Jerror: if we want to know what the solution would have been

WLOwith b = 0, we must actually make a solution with b set equal

\ 3 to0inthe computation of 1, in which circumstance W reduces
to wy, as already noted.

Exercise 5, (Given
¥ = a- bz

to be fitted to » points, z free of error, the y coordinates each hav-
ing weight w,, varying from point to point. This is similar to

* Published by the author in the Phel. Mag., vol. 19, 1085: pp. 380-402.
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Exercisc 1 except that now the y coordinates have unequal pre-
cisions. Iere we take

F=y—a—bx

ag in the preceding exercise, the derivatives being also the same,
But since z is free of error, w. iz infinite, and it follows that W
{defined as 1/L) is none other than w, All we have to do is
replace W in the preceding execreise by w,, and the results wil
apply here. The headings of Table 1 of Section 60 will be these; ™

k, or Point No. iy V Fy= —zi™\" P
For Table 2 they will be these: N
k, or Point No. ~ wy FofNL = —zvf w,,x.\\,‘ Vwy - Fy Sum

W

The normal equations are written in the s’é,ge symbols as those of
the preceding exercise, but with m pIace of W. Row HI in the
systematic solution of the normal equatlons (p. 158) gives the
minimized value of 3 wy(yab% N eate)”. In Rows 5 and 6 are
found the portions of the weighted squares removed by a and b, as
in Exercise 1e (p. 175). 24

Note that, as in the graceding exercise, it is permissible to take
ag and by as zeros, 1f\1sl}c number of decimals i the normal equa-

tions is increased @deordingly. In this event,
A/

o\: » Fy = Yobs
and the n{)}}ﬁél equations may be written
: AN
Row 8% @& B = 1 1 Ca Bum
A

\2?3 N [oea] Froy] 1 0

fwma] [wary] 0 1

[wpy] 0 0

giving ¢ and b directly. Row III in the sysbematic solution will

give the minimized value of X w,(¥obs — Yeate)® in the “17
column, and Rows 5 and 6 will show the sum of squares removed
successively by @ and b, as in Exercise le. Since w, is infinite, the

Q"
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question of an approximate value of b for use in the caleulation of
W does not come up.

Remark. For the conditions stated (z free of error) the
sum of the weighted y residuals is zero, Le.,

Twl=0
See Remark 4 of Exereise 4, Dpage 182, K¢ :\
Exercise 6. (a) Given the line O .
y=a-+br O3

¢€
to be fitted to n points, both 2 and Y coordinate&é‘lh)ject to error
but in such a way that Wy/ Wy i constant and nebinfinite nor zere,
the line passes through the center of gnaﬁﬁy 7 = lwx)/Tw,),
¥ = [wyw)/lw,), with slope N\

- clwn®] — [wu?l + \/{C[-wﬂQl’.—i :{u','u‘?]}z ~+ defwup]?
B 20fgbins]

This is equivalent to a result oBtained by Kummell in 1876, Karl
Pearson in 1901, and Ginign\1921. Here « and v are the z and ¥
coordinates of & puint, medaired from the center of gravity Z 7;i.e.,

Ui =T — T, and »y =‘-\y,- — . ¢ is written for Wy/w., and w in
place of w, for copkmencc.

(d) If the plus\sign be changed to minus in front of the radical,
the result is thelslope of the worst fitting line, that which mazimizes
the value of F(w, V.2 4 w,V,2).

(¢) Pr@e'that under these conditions of weighting, the best and
worst ﬁﬁ;ing lines are perpendicular to each other,

o~':Efé§ré£se 7. (a) Given
¥=a+ bx

to be fitted t6 » points when ¥ is free of error and all # coordinates
are of cqual weight (unity), we may write

rT=p+qy

and find the following normal equations for p and ¢. These are
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Row P q = 1 (] Ca Sum
1 n y] [] 1 ]
2 lwl fyz) 0 1
3 [zz] 0 0
like Set 2 of Exercise 1 with x and y interchanged. §

Row IIT in the solution of the normal equations gives X #es?
where now the deviations arc measurced parallel to the x axise K

() The reciprocal matrix A~" found in the C; and Ca\columns
of Rows 7 and 8 of the solution will be "\ 3

1, # 5o
n + nst | nsg?
A= v NS
7 1D
A S

7 NO)2
ns” Ny
where s,2 has the same significancesas in Exercise 3.

AN — 72
(¢) (The 8. E. of $calc)2 =~:5L' {1 -+ (_y_2y—)“}
o Sy

(@) The normal eqt}gﬁ:i})ns of Exercise Ta give 3. V, = 0. (See
the remarks in Exereises 1, 4, and 5.)

Exercise 8. () “Prove that with y free of error, and all © coordi-
nates of equal\précision, the normal equations for @ and b (or for
A and B) “i\rifEkercise 4 will give the same line as the normal equa-
tions in\Bxercise 7a (i.e., will give p = —a/band ¢ = 1/b), except
for ’qhe'éffect of the neglect of the squares of the z residuals. The
solirtion of Exercise 7o is the more accurate in not throwing away

\ma:;'ly’ higher powers of rt?siduals. This may occasionally be impor-

fant. (See also Exercises 18 and 23.)

(b) Show that if  has the same weight (i.e., the same precision)
over all n points, and y likewise, x and y both subject to error, the
line that one gets by the exact solution given in Exercise 6a lies
between the two false lines that one gets by i. throwing the
adjustment all on to y, using the equations of Exercise 1; and ii,
throwing the adjustment all on to z, using the equations of Exer-
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cise 7a; but that these two false lines differ only in the effect of the
squares of the & residuals and of the y residuals, respectively.
(Hint: Both terms of 1/W in Exercise 4 are constant over al)
points when w, and wy are constant; hence, so far as the values of g
and b or p and g arc concernod, W can be Put equal to unity at every
point in all three solutions — in the correct solution, and in the g S
false solutions. The normal equations of Exereise 4 will then give
identical results for all three. But the normal equations of \Pxer-
cise 4 can be in error at most by the neglect of higher powetsof the
residuals, hence the false solutions i. and ii. can differ™from the
true solution only through the neglect of such termg."{This means
that when # has the samo weight over all points{ Bnd ¥ likewise,
the false solutions will hardly be distinguishable from the true
solution if the residuals are all fairly small.*) 73
Remark 1. If W is eonstant from oné p\:mt to another, it jis

advisable for convenience of computatidn’to choose the systom
of weighting so that W = 1 at all points.  This is only saying
that the arbitrary factor ¢2in Eq. 18%f Section 11 is to be chosen
80 that W = 1. Then § in the ektrerne Joft enfry of Row III
in the solution of the normal’ Squations comes out in the same
system, and o%(ext) = S/fn — 2) is the external estimate of ¢f
in the same units as were arbitrarily chogen for it
)
{e) All three lines Rart (b) pass through the centor of gravity
Z, 7 (called also thedeentroid).
Eemark 2, (Statements similar to those of part (b) will hold
for any eurve when the combination of the form of the function
and the wqﬁhting of the coordinates causes hoth terms of 1/
to be tonstant over all » points, Example 3 of the next chapter - -
is ag Mistration in thres dimensions (three terms in 1 S
Ezereise 9. For the line ¥ = a+ bz fitted to n points, the
follewing expressions hold (all due to Karl Pearson, Phil. Mag.,
Vol 2, 1901: pp. 559-572). C . :
(@) X res® = n(1 — r2)s,2

« free of error, the y coordinates =ll of equal weight (unity);
the deviations measured in the vertical.  (This result was given
in Exercise 38.) . .

* This fact was noted by the author without proof in the Proe, Physical Soc,
(London), vol, 47, 1935: p. 107.



[CH. X] EXERCISES ON FITTING FUNCTIONS 187

®) I res? = n(l — 7%)s,?

y free of error, the x coordinates all of equal weight (unity); the
deviations measured in the horizontal.

(¢) T res? = inis.? + 5.2 — V(.2 — 57)° + 4,787}

. . . . s O\
The 2 and » coordinates of equal weight (unity}, the deviations

measurcd perpendicular to the fitted line. O\’

In these formulag, 8.2, 5,2, and 7 have the meaning ascribed mﬂ:nem

7%

in Exercise 3, page 177. . N

66. The parabola AS

Exercise 10.  Given ) xt\\J
y=a-+br+ e\
to be fitted to » points, = and y hag%{}é:vlf;aights w, and w, at any
point. Here we take LN
F=y— (o —L-“b:c—I— cx?) _
Fo = yobfw—@(ao + booss -+ Coobs”)
The derivatives of F‘ﬂ@é'
o= ~0+2m), Fy=1

PN\
x:\.": Fo= —1, Fy = —u, F, = —2?
i"\§~
V) b 42?1
& ’\\ — I — —
“;.\ L or W W, + Wy

s\ )
\*Pbe'headings of Table 1 in Section 60 will be these:

F, or Point No. Fp = —( +2cz) s Wy L L F, F. Fy

1t is understood that in ealculating all quantities under these
headings, # and y are to be replaced by their observed values, and
a, b, ¢, by as, by, ¢o {cf. the note at the beginning of Sec, 65, p. 173).
1t is not necessary to tabulate Fy and Fg because they remain con-
stant from point to point.
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The headings of Table 2 will be as shown below.

h, or Fo/N L Fo/v L Fe/~ L Fo/vV L
Point No. = —+W =—-VWz =—VWa? =vyWF

Sum

The usual process of cumulating sums of squares and cross-

products iz Table 2 yields the following normal equations. O
Row 4 B ¢ = 1 C1 C; €3 Sum R\,

I (W] (Wa] Wzl —[WF] 1 0 0 ... N

2 (W22 [Wad] —[Wzl 0o 1 o . et 1,

3 [Wed —[Wz2Fg® 0 0 1 ..., {Exercise 10)

4 HIWFF 0 0 0 N

The solution, carried out by the usual roptine procedure, gives
4, B, and C, whence the adjusted valucs 0{&, , and ¢ are

a4 =ag — A
b—b@mB
c=b0 C

The minimized value of/S.or ¥ (V2 + wy,V,2) wﬂl appear in
Row IV, column “ 1.” ~Fhis will be simply X w, V2 if y is free of
error, and 3 w, V. 21&50 is free of error.  Directly ahove, in Row &,
appears the sum ef\gquares that is removed from [WFF] by shift-
ing the y inter¢épt from ag to ¢; in Row 9 appears the further
deerense bljelight about by sllowing the second parameter to shilt
from by te™p; and in Row 10, just ahove S, appears the portion of
the swmn\of squarcs that is finally removed by adjusting the para-
boligsberm from egz? to cx? (see Exercise 3 of Sec. 61).

~ The reciprocal matrix A™? will appear in the ¢, C5, ('3 columns

Nof Rows 11, 12, and 13 {the * back solution ™), eontaining the

variance and product-vanance coefficients for g, b, and ¢. (See
Exercise 12 for the matrix A™ in a special case.)

Note the similarity between Set I of Exercise 4 (p. 179), and
Set 1 of Exercise 10. Note also that if z is free of error, ag, bp, and
¢o may be taken as 0, so far as Fy is concerned, in which event Fj
becomes gimply

FO = Yobs
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The normal equations then give a, b, and ¢ directly, and would
appear as shown below.

Row o ] e = 1 ¢y Cy €5 Sum

I W) wsl Wzl Wy 1 6 0

2 Wz [W=% [(W=y] O 1 0 (Set2,
3 (Wat] [Wzk] ¢ 0 1 Exercise 100, M
4 Wyl © 0 O N

More decimals will be required here than if good valugs)of “ap,
bo, and ¢ had been used in the caleulation of Fo, and the previous
normal equations (Set 1 of this exercise) had been used to find A,
B,and €. Why? AN\

The reciprocal matrix is the same, in both sgts, and the min-
imized value of 3o (w.V? 4 w,V,?) agdin“tomes in the ex-
treme left entry of Row IV; but, as in.Remark 5 of Exercise 4,
the entries directly above it in Roya30/and & do not show the
inerements in the sum of the weigl;t’ed'squares that would result
from setting c = Qand b =¢ =1, respectively, unless & and ¢
are vory small, or z free of grtar,

Note the similarity between Set 2 of Exercise 4, and Set 2 of
Exercize 10. The remarks at the end of Exercise 4 apply here
with obvious modifiations. For example, approximate values
of b and ¢ mus; b used in the ealeulation of W at each point
where z is subjéetito error.

Ezercise 11 Given®
’:"\ y——-a-l—bx-l—cxz
to befitted to n points, x free of error, all ¥ coordinates of equal
weighto(unity). If ao, b, and co all be taken as 0, the normal
cqlations giving @, b, and ¢ directly are
r o D

P

\ SEow @ b c = 1 1 sy Cs Sum
I = [x] %] [ 1 0 0
2 (=% [=% [y 0 1 0
3 [z [=2y] Q 0 1
4 [y 0 0 0

5 Qee the reduced type at the beginning of this chapter for references to
special methods involving orthogonal polynomials, applying to problems
wherein z s equally spaced.
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These arise immediately from the last set of normal equations of the
preceding exercise by noting that under the conditions w; = =
and w, = 1 throughout, W = 1 throughout. Row IV in the solu--
tion of the normal equations will contain the minimized value of
3 (Yobs — Yeatc)® in the “ 17 column., The sum of squares suc-
eessively removed by the constant, linear, and parabolie termsg Wil
appear in the “ 1 7 column of Rows 8, 9, and 10 (scc Exc ruae‘% of
Sec. 61; also Exercises 1, 4, 5, and 10 of this chapfer). 0

Note the similarity betwecn these normal cquatmns and those
of Exercise 1, Set 2 (p. 175). P\

Ezxercise 12. (a) In the preceding exercise, Iet%he\ origin of z be
taken at the mean value of #, and let nu; bedwxiten for [z%] and
nug for [z*].  Then the normal equations apg

Row a b ¢ = 1{‘,\“ h Cz Cs
I n 0 g [y} 1 0 0
2 Thes 0 "[:cy} h) 1 0
3 g ,.f:l [22] 0 0 1
4 SN Iy 0 0 0

Show that the reciprgc‘@j matrix is

\\ g 0 “z
3 Y
N, Mg — Tigg” TNy — Mg
A\ X
AXy 0 — 0
“\";.\ Thjig
\\ _ o 1
9 :’; Topg — Twz 0 Npg — Mg’

»F rom this matrix, one can write down the standard error of the
N fitted curve, or of any function of @, b, ¢, in terms of v (zsee Sec. 62;
also Exercize 2 of this section). In particular, the

0,2

n(l — pa®/ua)
2

& E. of )% = —
T
2

[+

n{uy — #22)

(8. E. of g)? =

(Compare with Exercize 2, p. 176.)

i

(8. E. of ¢)?
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The (8. BE. of weuc)® at the center of gravity is equal to
o?/n(l — p2®/is), which excoeds the value o*/n found in Exercise 2
for the line.

() Show that the determinant A of the coefficients is equal to
nius (e — pe?); hence that near indeterminacy (small A) will
result not only in instability but also in high standard errors for a, {
b, and ¢, and rapid fanning out of the standard error of ... (see
Exercise 2¢, p. 176; also Exercise 2a of Sec. 61, p. 162). R, \)

67. The exponential and its logarithmic form.. N

Ezxercise 13.  Given the equation D

2\Y
y = ad” 3
to be fitted to n points, = free of error, all y,todrdinates of equal
precision (unit weight). Here we take
F =y — ad®)"

Good approximate values of g’a}ld b can usually be found by
plotting log y against z. Assurbing that they can be obtained, we
write N
Fo =Y — ayd™ (¥ dendtds an observed y as in Fig. 17, p. 133.)
The derivatives of Pare

Nl R = —
’.‘\Fy—l, Fu G’ Fb Ty
W=1 a‘g@fi Joints: hence Tables 1 and 2 of Section 60 coalesce.
They wQ{bé made up as follows. For eonvenience in writing, the
subsetipt 0 will be withheld from the a and b, X1, ¥y, ete,, are

'ghe%b'served x and y coordinates of the » points.

N/ TanLEs 1 aND 2
k F. Fy Fy Sum
1 —Yi/o X171 Yy - alh
b,

2 —¥ola —XaYs Yy —as

ete.
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The normal equations are formed from this table by summing
squares and cross-products:

Row A B = i (o5 Cs Sum
I [¥2/a? [XY¥2%/a] —[¥Fu/a) 1 0 Cea

2 [X2Y¥ —[XYFq] H 1 o\
3 [FoFyl 0 G -
R,

The solution of the normal equations by the usu’af routine
described in Section 61 gives A and B, also the reciprodal matrix,
and the minimized value of 3 res®. The ad]usted Adlues of ¢ and
b are then o

a =ty — A

>

b=1by - B '\
The extreme left entry in an ITX of thc solution of the normal
equations gives S or X, res?, ﬂ‘:@ residuals all being measured
entirely in the vertical (ie. paz'allt,l to Oy). Directly above S,
in Row 5, appears the sum of squarcs removed by the shift from
ap to a, and in Row 6 thefurther decrease brought about by adjust-
ing the exponent fl{){ﬁboii to ba.

Ezxercise 14. If\}h the preceding cxcreise, the z coordinates are
free of error but the y coordinates have unequal precision, desig-
nated by weight w (varying from peint to point), W is no longer
unity, buts equal to w, which may vary from point fo point.
Table\%s:}f Section 60 then runs as follows:

y \’ ";h Fo/y L Fy/N L + w-y Sum
1 —m¥rie —XiViver  vwi (¥ — e
2 ~Vw¥afa —XoVevuwe +wa(Ve — ad™)
eto,

The approximate values ¢ and bg are inserted for @ and &.
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The normal equations, formed from Table 2 in the usual manner,
can be symbolized as follows:

Row : | B = 1 ¢y Oy Sum
I fw¥?/a% [wX¥?/a] —[w¥Fq/a] 1 0
2 LeX2¥3 —[wX ¥ Fy] 0 i
3 [1:8 o) 0 0
A

In the solution of the normal equations by the routine @b page
158, the minimized value of 2 w(yewe — Yeato)® comé‘sg in the
extreme left entry of Row III.  Just above, in RoweA and 6, will
appear the portions of the weighted sums of sqbﬁfes removed
suceessively by adjusting @ and then b (see Fxercise 3 of Sec. 61;
also Exercises 1, 4, 3, 10, 11, 12, and 13 of this¢hapter).

The adjusted values of a and b are, ais.ﬁtstral,

a=a T &
b = be~ B

A and B being found by gelx;ing the normal equations. Naturally
these normal equations hecome the same as those of Ixerecise 13
fw=1 throughol{c'\\’

Egereise 15. (@) The formula to be fitted in the two previous
exercises canbbtaken in the logarithmic form
X’\ N,/
'S logy = log a + b log ¢
N
Supgote now that 3’ be written for log y, @ for log a, b for
LJI(og e; then
\/ y = o + bz
We now take
f=¢ — @+
Jo= ¥ — (a +b'X) (¥ =log Vo)

1l

. ' e
wherein @y’ means log o, and by’ means by log e. The derivatives
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of f are as follows:®

' df dy'  0.434
B = - ! = 1, -
f b, f&‘ fy dy! dy Y
fa—' = -1 fb-’ = —z
I 2
Lor—l— =f=_"f=+fyfy=b_+0.434

W ow,  w, wy Yy

Suppose that x is free of error, but that the weight of an obs’e;‘}éd

y coordinate is w, which may vary from point to point. {(If all y

coordinates have equal welght, it is easy to put w Qqua.l tolin

what follows,) With w, = %, the first term in/&"drops out,
leaving N

It will be noticed from the result of E):{a'cise 8e, page 45, that if
w is the weight of y, then y*w/0.434%i8 the weight of 3’ or log ¥.
Suppose that on this account we 88

e

2

Sy v

Then w' is the weight im?;f, and
\ \\ W=uw

If w (the WBighb%}f"g) is constant throughout, then w,, is not, and

vice versa. {C ~the remark appended to Exercise 18.)
Table ZQQf.\Section 60 will have headings as follows:
\

= (2.30)%w

N -
A, or fa/VL for/V L )
“\P,'qiht No. = —fw’ = —zyw ¥ w'ifo || Sum
\”\: The norral equations will be
Row 'y B = 1 _ (e O Sum
I [w") frw'] —[w'fy] H 0
2 [z%'] ~[zwfo] 0 1
3 [ fafol 0 0

€It is convenient to remember that loge = 1/ln 10 — 0.434 ... —

1/2.30---. The symbol log means base 10, and the symbol In mesns base e
{logarithme naturel).
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We perceive that these are similar fo the normal equations of
Excreise 5, but with w’ in place of w, and f in place of F. More
precisely, the comparison is this:

In Fxercise 5, ¥ = @ + bz, z free of error, y of weight w.

Here, y-" — I‘J,’ + b»"x’ [T T R 1] y! I3 “ w."
This means that we may fit the equation y = aé®® by writing it
in the logarithmic form Q.

logy = log @ + bz log e O\
and treating it as a lincar equation in log y and z, at the sgie time
giving In y a weight just y” times the weight of y, or log'y @ weight
(2.30y)? times the weight of 4. O

Remark, Tt is customary among computers to\ﬁi; the expo-
nentizl equation y = ad”® by taking logarithihs¥and treating
it as linear in log % and =, but it is not go Jsual for them to
change the weighting to correspond t “he logarithms. The
neglect of the factor (2.30y)? not ouly Historts the results for ¢
and b, but also invalidates the reciproéal matrix and all caleu-
lations made with it on the standard error of & funetion of the
parameters; moreover, under'giich circumstances, the extreme
loft entry of Row III no longer eontains S. See also the re-
duced type at the cong;]usiéﬁ of Exercise 18, page 201,

(b) The extreme leftEntry of Row III in the solution of the nor-
mal equations ¢ I{%.—i.ﬁs 3 0 (Yops — Yoarc) - The extreme left
numbers appearjr%\ in Rows 5 and 6 are the weighted sums of
squares remowed” successively by adjusting o and then & {see
Exercise 3 ghSec. 61, and Exercises 1, 4, 5, 10-14 of this chapter).
These g@;t}&eﬁlentq would not be true if one were to neglect the
factor\(2.30y)? for the weight of log y.

Noté that in the normal equations of part (a) it is permissible to
A8 o' = 0 and by’ = 0, in which event

\ ) fo = Y’ or l{)g Yobs
whereupon the normal equations will be as written below.
Row a’ B = 1 C1 Cy Sum
! [w'] [v'X] [2'Y] 1 0
2 [w' X3 (W XY 0 1
3 _ w'Y'Y'] 0 0

w' = 2.30%%w as on the preceding page.
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These normal equations give ¢’ and b directly. As in Exer-
cises 1 and 3, no question of an approximate value of b enters for
the calculation of the w, sinee w, is infinite (x free of error), but
more decimals arc required than when good approximate values of
o' and b are used. (Sec Exercise 1d.)

In the solution of these normal equations by the routine exhibited
in Section 60, the minimized X w(¥oe — Yeato)? appears in the
extreme left entry of Row ILI, as usual. Directly above Gb\in
Row 5 comes the reduction brought about by changing a {forh I'to
its final value, and in Row 6 appears the further reduqti{z‘ﬁ ‘accom-
plished by turning the logarithmic line from the horjzpﬁta[ through
the angle arc tan b'. oN

Ezercise 16.  In fitting the equation \

y = ad* \’\\
with z and y both subject to error, we phay'take F as in Exercise 13,
whereupen

Fo=Y — aee™™ .(fg(:éind Y observed)

Here we have use for the addiﬁoﬁal derivative F, = —by, whence
SR
Lo =—r
™ W ws  wy

Ii 2 is free of erxor, the first term of 1/W drops out and leaves
W = w,, thesifdation assumed for Exercisc 14; if y is free of error,
the second sgemh drops out and leaves W' = w./ b7,

Sinee wa are here taking the case where # and y may both be in
error,gvéset up Table 1 of Section 60 with headings as follows:

LN

Péﬁt" Lor +Lor
a\" - ) , D v
(o, o= =by we @y g gy Fom /e Fo= ey B

From this is formed Table 2 with headings exactly like those of
Exercise 14 but with w replaced by W.  Likewise, the normal equa-
tions will be symbolized as in Excrcise 14, w replaced by W. In
fact, once Table 2 is set up, from then on it is immaterial to the
computer whether one or both coordinates are subject to error —
a statement that holds good in any problem of curve fitting,
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The solution of the normal equations will give 4 and B. The
minimized sum of weighted squares (8) will appear in the extreme
left entry of Row I1I, the portions removed by the successive ad-
justments of ¢ and b falling in Rows 3 and 6 directly above S.
(Cf. Exercise 3 of Sec. 61 and Esercises 1, 4, 5, 10-15 of this chap-
ter) Here, 8 =X (w.V,* + w,V, %), both z and y residuals

being present. O\
Exercise 17. To use the logarithmic form of the exponential
(see the preceding exercise) we write o\
logy =loga+bz (F =bloge A\ -
= (.434b} /)
or o\

y," — a.f + b.f I
for fitting the cxponential y = aé®® when xai\l}}@ are both subject to
error, one would define f as in Exercise ,15\; whereupon
fo =¥ — (g +h'X)
The derivatives of f are as igﬁﬁvkéi'cise 15. L or 1/W will now
have two terms, both coordinates being subject to error; in fact
o1 bE
L — =4 —
.:"‘;Qr W o, wy
At . .
wy being the “{(ﬁg}t of logy. The normal equations will be
symbolized exaetly like those of Exercise 136, but with W in place
of w', The eﬁgﬁr&me left entry in Row ILL will be the minimized
sum of sqliates S, with the remarks ab the end of Exercise 16
applyi “here as well.
Thie‘analogy with Exercise 4 is perfect throughout, as shown by
.t following summary:

N\ ) Exercise 4 Exercise 17
y=a+ bz : y"-——a"+b"x
1 1 1?1
W ow | wy W we | wy

AlL the remarks and notes of Exercise 4 apply here if y is replaced
by ' or log 4, a by a’, b by b’, and w, by wy-.
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Tt is possible that in some problems, w,, might be constant from
one point to another (in which caso wy, is not constant); then if w,
is also constant, we have a situation toward which Remark 2 at the
end of Exercise 8 (p. 186) ig directed.

Exercise 18.  (u) Take
f=1logy — (loga- b'z) (asin Exercise 15)
_ b T 7 7 AN
F=y—ae ( 13').\ :

and suppose that z, ¥, @, and b take on small incremgnté‘denoted by
8z, ete. Prove that +£0)

§F = y of log ¢; o

L&

hence at any point, Fg = yfy log ¢ to Wii;hin\l‘;jgher powers of fy or
7., Ky

() Thence prove that the norma] efuations in Exercise 14 for
fitting ¥ = ae® will give the same”gﬁfve, 1.e., the same results for
@ and b and for 2 w{(es —’,gc;;;;)z, as the normal cquations in
Exercise 15a for the equivalent logarithmic form, except for dis-
crepancies involving the*squares and higher powers of residuals,
the logarithmic form\PBeing slightly more accurate.” (Hint:
Note that if A is@fill, A’ = 0.434/a. Also, so far as ¢ and b
are concerned, the top normal equation in Exercise 14 may be
multiplied throtgh by a.)

The Same{(:()mparison holds between Exercises 16 and 17. But
with b #0yand = and y both subject to error, there is not so much
advap%ge in the loparithmic form.

4 \’R'é}na-rk. It may be worth while to pause for a comment on the
{ faetor (2.30y)? which is required for the proper weighting of log ¥.
Take the one-parameter curve®

y = 10

T Mr. K, A, Norton pointed thiz cut in one of the author’s classes.

8 This illustration was developed in some sorrespondence with Professor
W, L. Gaines of the University of linois, extending between 1932 and 1938;
also In conversations with Mr, G, R, Gause, lately of the Aberdeen Proving
Ground, now with the War Department in Washington.
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and, to make the problem simple, let it be fitted to just two points
in the ay plane,  being free of error and both y observations of
equal welght (unity for convenience).

z ¥ log y
1 10 1
2 65 19777

To amrive at the least squares solution, we may write \
F=logy— b A\
N\
F(} = lOg Yobs — bﬂfu" /\“. N/
Fp= —1 ,"1 3
kW
F, = —bp (not needed because the weight of :i:‘ﬁ infinite)
1 \

F —_— :' \./

v = 330y 0

L= FyFy 1 j‘f:""

-——w == _(2.30'3)')2 “‘::.“’; 3

NS

There is only one normal equation, namely,

\
B = FyFo ] be:l L w'z(log yors — *bo)
B VAR NN A2 T w'z?

wherein '’ =~(§2‘.;30‘y)2.
Note.i\’TfJe same equation for B can be derived by saying
that &g Seek to minimize
N 5= T w'(log yass — log Year)s W' = (2.30y)*
.~\“f{eplace log %eate DY bx, o1, rather, its equivalent (bo — Bz,
N\ and get

§ = £ w (10g Yo — [bo — Blz)®
B is the {unknown) quantity which, when.Subtracted from
b, gives the final b. Now differentiate S with rqspect to B,
and set this derivative equal to zero. The result is

¥ w'z(log Yobs — [Po — Blz) =0
Solve for B, and the result will agree precisely with that shown
above.
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To continue, we may take by = 1, a value easily found by inspec-
tion. We also replace w’ by the correct weighting function Yobe,
and get

1 X 10%(1 — 1) + 2 X 95%(1.97772 — 2 X 1)

B= 17 X 107 4 22 % 952
N
402.15
= ——— = (,01111 D

36,200 O\

whenee _ . O
b=bo— B=1-001111 = 0.98889

This is the least squares value of &. R4

Now if in performing the solution we had madvertently taken
w’ = 1, forgetting that the weight of log 4.4g¥m0t the same as the
weight of ¥, L would have appeared {o&}ae constant (unity),
instead of proporticnal to y?, and the xegult would have been

..};Z’f
S + 20197772 — 2)
S 124 22
1004456
y N ‘_ . 5

= 0.008912

and b would\l’isﬁré been
OYb =8, — B =1— 000801 = 0.99100
NS

The \comparison of the sum of squares for the two different
sohitions is shown below.
\./

M
\ Correct weighting False weighting
b = 0.958880 = 0.99109
lﬂg Yeale = Yobe — (yabs“_‘log Yeals = Yobz — (yaba -~
¥ el 0.08880z | Yol | Ty L Ve g ng100¢| Vet Yeate | Yeato)?
1] 10§ 0.93889 | 8.7474| 0.253 0.064‘ 0.9910% | 0.797] 0.203) 0.041
2! 95{ 1.9Y778 (95.012 |—0.012| 0.000 1.98218 |95, 966(—0.966| 0.933
Bum of squares, § = 0.064 l Bum of squares, § = 0.974
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Thus, by weighting log y in proportion to Yobs® We obtain g sum
of squares that is only a fifteenth that obtained by ignoring the
change in weight.

The only circumnstance under which the factor y* may be
ignored is where the fitted logarithmie line is nearly horizontal,
for then the weighting factor y® is nearly constant from one
point to another and ean be omitted without serious error in
the formation of the normal equations, the parameters a, b, ¢,
ete., being left practically unaltered. , '\‘ N\

Tven 50, the last entry in the ¢ 1" column (Row IV, p. 158) )
i not 8, but requircs multiplication by an average valug-of
(2.30y)?, which might be denoted by (2.30y)% Morebver,
sach clement of the reciprocal matrix requires @lifdsion by
(2.307)° before it is to be interpreted as a varifinge cocfficient
{ef. the remark on p. 195). However, it is interesting to note
that, owing to compensation, the uncorrgbﬁé elements when
used in Fg. 24 (p. 168), along with thelesternal estimate of
made from the uncorrected sum of squiares, will give the correct
value for the estimated standard errer’of a funetion.

The factor ¥ takes care of tHeichange in scale that accom-
panies the transfer to logarithgns. The student may find it
helptul to refer back to Fign0'on page 45. The g values may
all have the same weight;*but their logarithms do not. No
matter what functiowis being fitted, the two terms FoFz/w:
and F,F,/wy in L of WW (cf. Eq. 8, p. 134) can be relied upon to
perform the sam\sérvice as (2.30y)% does for the logarithmic
zcale. \

This exgmple is an illustration of the fact that if the pro-
cedure af\Section 60 is followed, it makes no difference how
a forrfile is written. One form will give the same curve a8
am{t.lliiei", except for disturbances arising from the neglect of
gebond and higher powers of the residuals, but these are not

wyfually of mueh consequence if the data are worth fitting.
_(NY Of course, in some lines of worlk, the weight of ¥ is approxi-
V™ mately inversely proportional to y*, whence the weight of log ¥
is practically constant, independent of . When this is so, the
weighting factor y? is to be omitted.

Ezxercise 19, (Yatema's refinement.)® In fitting the curve
¥ = aebz
% This device has been taught by Professor Theodore Yntema ab the Uni-
versity of Chicago for years, 1t was first called to my attention by Dr. John H.
Smith of the University of Chicago (more recently of the Bureau of Labor
Statistics in Washington).
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with @ free of error, we seek to minimize
S =X wly—y)?

where w is the weight of the observed y coordinate at a particular
point, and g, is the caleulated ordinate, ae®®. The novrmal equa-
tions will be obtained by equating to zero the derivatives of 8
with respect to ¢ and b, by which process we find that \v

dyc_ '\‘\
2wy — y. da-0 ;:\"}

T
4 ‘:

. dit, «.
—y) 2= A
Tuly — )= &

Now we may use the logarithmic forQ. by rewriting these
equations as D

= 8(y) (y’ — ycr> aﬂ%’i’c! =0
KN
T ) 5’ =0

wherein 3" = log y, Y, & logy., ¢’ =1loga, b'=b loge, and
8(y) is such a functioh of i that the two forms of the equations are
the same, Evidgn}?l} it must be that

O e
da y — y. dye ¥ -y
SO0y = w s e, e Y e
O dy.' v — vy dyy g,
.‘so\ . : dﬂf
N = 2.30%wy " (yhere denotes Yabs- )

a\¥Y4 . . .

\\ The last equality is not exact, but is very close, as Professor Yntems,
discovered, and as the student may wish to demonstrate for himself.
The normal equations are exactly like those in Exercise 15, 8(y)

now replacing »’. It will be observed that the Yntema refinernent
has merely replaced y* in v’ by y2* in 8(y). Therc will be
scareely any distinction if the residuals are all very small, in which
event y. and y (the caleulated and observed % values) will be very
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nearly equal, and yohy! will be very nearly the same as y%.  When
the curve does not fit well, it may be important to iake account of
the Yntema refinement.

8. The exponential with a linear component

Ezercise 20. Given the equation
y=aéd® +w+d

to be fitted to n points. Write PR

ba

F=y—-a®—cc—d

The derivatives are \\
F, = —d% Fy= —a0d®, Fo= =2 By = ~1
F,= —abe™ —¢, Fy=1 N
1 (@b e | 1 S\
1@t L o

W We w,

(The first term of 1/W is missingjf o is free of error, the second if ¥
is frec of crror.) A "

The formation of Tableg T and 2 of Section 60, and the formation
of the normal equatiopns atid their solution, proceed in much the
same fashion as h ‘rt,r\ﬁofbre. The only novelty is that here there
are four paramebers,'and hence four unknown parameter-residuals,
A, B, €, and ByThe numerical values of Fo and the derivatives
Fo, Fo, Fy, &fo.; for use in Tables 1 and 2, are calculated with the
approxiaie values o, bo, €0, and do, arrived at somehow (see the
reducc%i;’cjrpe at the end of Sec. 55).

Th:e extreme left entry in Row V of the solution of the normal

__eqiistions will give the minimized T (w,V.? + w,V,"). The
‘entries just above it in Rows 12, 13, 14, and 15 will show the redue-
tions in the weighted sum of squares arising from the successive
adjustments of a, b, ¢, and d.

1f only the y coordinates are subject to error, the extreme
lefs entry in Row V will give 3 w - res’, the deviations being
measured in the vertical (i.e., paraliel to the axis). Moreover,
if all y coordinates have the same weight {unity), then wW=1
throughout, and Tables 1 and 2 of Scetion 60 coalesce.
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With a formula of this kind, there is no possibility of making
it linear by such a device as taking logarithins, for which reason,
this problem and others like it have been called insoluble. Far-
tunately, the solution is entirely straightforward.

69. The generalized hyperbola and its logarithmic form

N
Exercise 21.  Given the equation )
y = a2’ W)
O
to be fitted to n points. Here we write N\
F = y axb ’\:
whence N\
Fo = Yobs — 0Zops®  (a and b being replaced by ap and bo)
The derivatives of F are \ ,\ ‘
—by o
Fp= _a;j’:“ Fy, =1,

Fﬁ,;f%y, Fy=—ylnz
L Ol _ b 42
Q{ Wt | ow,

The headingg-for Table 1 of Section 60 in the general cage
would be S N

."\\~
WiF= 2 Shu/afu |t or Y|V Lor /v e - —y/ang -y I_n:::éFn

AN\ 7

‘,,\~It"is casy to make the necessary modifications for special cases.

“N\Thus, if z is free of error, then W = Wy and the F, and w, eolumns
‘are superfluous; if further, all ¥ coordinates have equal weight
(unity), then W = 1 for all points, and Tables 1 and 2 will coalesce.
On the other hand, if y is fres of error, then 1/W = b2y /a*w, and
the w, column is omitted. From Table 1 is formed Table 2 with
thesce headings:

b | NWFior P/ L] NW-Pyor Fyy L | N W-Foor Fo/y L || Sum
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The usual sums of squares and cross-multiplications from
Table 2 give the normal equations

Row A B = 1 1 s Sum

I IWELF,) [(WE.F4) —[WFFy 1 0

2 [W ) — [WFuFl 0 1 e

3 (WHoF) O 0 -\

Exercise 22. The equation y = az’ of the preceding ex&nmse
may be turned into the logarithmic form

\
logy =loga—+blogz ("}'«.
or y =a + bz’ (asin Exercise 15».)‘
Let =y ~ (@
e f=y =@+ N
fo as usual \‘\\
The derivatives of f are A\
0434b\ > 04
R
8 ¥
Jo = —jy ) Jo = ~z
Then p;
N
(80" = 0434 +
A\ 2w, Yy
. L
A\X J Wer | Wy
Wherem\
4242
L \0484 ,1 (See Exercise 8¢ on p. 45.)
uwn 2w, whofz orlogz
~\ i
N/ — simi

" ilarly defined. The headings for Table 1 of Section 60
y!
will be thege:

h, or

Lor
Point No.

\wz Wyt wy wyr /W VL

Ifz fo f[!

(See the remarks under Table 1 of the preceding exercise. Far is not listed
being constant.}
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The headings of Table 2 will be the usual ones, as in Table 2 of
the preceding exercise with f in place of F.

The normal equations will be symbolized precisely like those of
Set 1 in Exercise 4. In fact all the remarks and notes of Exer-
cise 4 can be translated directly to the present problem. The
reason is obvious: we have here a line in the variables 2’ and\y',
with weights wz: and wy. The two terms of L or /W seafiyabove
take care of the change in the form of the function from expotfential
to logarithmic. In fact, we could say that >y

1 _ffe | Sy _Lhs, Sl

W Urps Wy Wy

as in Exercise 11b, page 46, \\

Exercise 23. Prove that the nomi:a} equations of Exercise 21
for fitting ¥ = ax® will give the samé curve, i.e., the same results
for @ and b and hence for S, as tﬁer normal equations of Exercise 22
for the equivalent logarithmig* form, logy = loga + b log z, ex-
cept for discrepancics involving the squares and higher powers
of residuals, the logapithmic form being slightly more accurate,
especially if & is freez@'f%rror. (Refer back to Exercises 18 and 22.)

&
707, The hyperbola with a linear component

Exergi%%. Given the equation

N y=as’ +c+ds

~t'be fitted to n points. Write

F=y—a®—c¢—dp

Fy at any point is found, as usual, by giving  and y their observed
values at that point, and g, b, ¢, d their approximate values ao, bo,
co; dp (found somehow; Sce. 55).  The derivatives of F are

Fo= —aba® — ¢, Fy=1, Fo=—zb Fy= —qzPlnaz,

Fc'—_—]., Fd=‘—$
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whence

1 {ebz™ 144 1
W wm w
(W = w, if z is free of error)

L or

Tables 1 and 2 of Section 60 are made up, and the normal equa-,
tions formed and solved, by the usual routire. Row V in the ** 1€
column will give the minimized value of S or I (V22 + wy U2,
the successive reductions in the weighted sum of squares appearing
in Rows 12, 13, 14, and 15, as usual (see Exercises 1, 4, 5,.10-16).

The reader should refer back fo the reduced tygejé,ppénded to
Exercise 20, which applies here as well. AN\

Exercise 25. Given the equation O '

u=ax+by‘-i-nt@:.\'
u, %, 4, and z possibly all being observedt! (This equation is used
by Professor W. L. Gaines at the University of Illinois in his work
on nutrition and lactation.) Take
F = u <Naz + by® + de)
Fy aslsual
The derivatives of \Qme
F,= 1{..235 = —a, F,= -y, F.=—d
Fo=(S8 Fo= —tf Fo= ~bflng, Fa= =2
1. ’:. 1 z Cb =142 d2
) A & + _(_y__}_ 4=
K4 wu w; wy 'wz
Hele we have a problem in four dimensions; 1/W contains four
ferms. The first term is absent if w is free of error, the second if x

1s free of error, ete.
The headings for Table 1 in Section 60 would be these:

F.= |Fa=|Fg
—bylny| —2

Fq =
-

Fy =

R,or |y 1w, by° Fy wy we -
-4

YW UNW
Point No. |

Some of these headings will be emitted if any of the u, =, y, or 2
values are free of error throughout.
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Table 2 will be formed by divisions in Table 1, and the headings
would be as shown below:

k, or

Point No. VW-Fo ~W-F NWF, W-Fs WF, Sum
\

The normal equations will be formed and solved in the'usgal
routine manner {p. 158), Row V will contain the minirizgd valie
of 8, belng in this case X (w,V? + w. V. + w, V)2 .V,
in the 1" ¢olumn, the successive reductions in the wﬁlgh’ocd sum
of squares appearing in Rows 12, 13, 14, and 15\3,5 usual (see
Exercises 1, 4, 5, 10~16, 24).

If only the u coordmateq are subject to eryor, 8 = X w.V.’
Moreover, if all the « coordinates have th&/3ame weight (umtv),
then W = w, = 1 throughout, and Tables 1 and 2 coalesce.

The second paragraph in reduced t} pé appended to Exercise 20
applics here (p. 204).

ay
Ny

71, Miscellaneous
Exercise 26.  (a) Gly’e}t the equation
&
\ @ =ar - by + cz
to be fitted to ¢i§é)l;served points. Take
\,\\” F=u— (ax+ by + )
and sheﬁ‘ that

1
o) —u;——+—+—+—

\ W

\ )
Then the normal equations will be symbolized in the form shown.
Row A B ¢ = 1 1 s C; BSum
I [Wzx] [Way] [Wizl —[WazFyq] 1 0 Q
2 [Wyyl Wy —[Wyly) 0 1 0
3 [Wez] —[WazFy) 0 0 1
4 [WEgF ] [} 0 0
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() If it is desired to solve for g, b, ¢ directly, the unknowns in
the normal equations would be @, b, and ¢, and the “ 1% column
would be

[Wzu]

[Wyu]
[Wzu)
(W] O\

7NN ¢
Extra decimals will be required for accuracy, as mentioned on
page 175, )
(¢) Prove that the minimized sum of the weightéd‘squares is

S = [WFoFol — [WxFolA — [WyFoBSMWeFolC

If the normal equations are set up fo give, a',%,'and ¢ directly, as in
part (b), then ,\

8 = [Wuu] — [Wauls —Wyulb — [Wzule
(See Exercise 3a in Sec. 61.) *“ )

Remark. 1 u alone issiibject to error, and of uniform pre-
cision (unit weight) thifdughout, the only change in the normal
equations would besthat W would not appear, being unity
throughout. &é\‘minimized sum of squares would be

K :S = [uu] — [zule — [yulb — [eule

This equaﬁoﬁ is uged a good deal in some kinds of statistical
work Y86, e.g., p. 160 of the 6th edition of Fisher's Siatis-
tieal Méthods for Research Workers, on which the above equation
_@ppears as

A 8 ¥y = S0 — hS(ew) — baSlew) — bSaw)
\m ; “" " this being the sum of squares after fitting

Y = b;ﬂl + ngz + bsl'a
Example 3 in Chapter XTI is an illustration.
Exercise 27. In pharmacology and toxicology, experiments are
made on & certain number n of organisms or animals to test the

lethal action of a drug or dosage of X-rays, for various concentra-
tions, or various times of exposure. The proportion killed is
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usually designated by the letter p, and the proportion surviving
by the letter . Under the assumption that the susceptibility of
an individual to a poison is & normally distributed variate, the
relation of p and ¢ to the deviation y from the average suscepti-
bility may be expressed in terms of the normal integral by the
equation

_ _1__ P e 1 O

q \/2# é dt=1—1p |
{ \

By using a table of the normal probability integral it i 8 poaslble
to express gin terms of y.  "T'o avoid the usc of the nogaux € norimal
deviates that arise when the observed survival g is more than half
of the animals tested, Bliss'® has introduced thes.’be?m probit, and
has provided tables for conversion. Probits are simply normal
deviates to which the eonstant number 5 4ias" been added, If ¥
denotes a probit, then Y = ¥ 4+ 5. Thévscale in probits runs
practically from 1 fo 9, the 5 in themiiddle corresponding to the
center of the normal curve, where g = 0.

It has been found that whenSthe dosage is expressed in loga-
rithms, and the observed proportion g suwrviving is transformed
into probits, then the relaiton between the log-dosage and the
probits surviving is apptoximated by a straight line. The fitting
of this line, with iye‘r weighting of the points, constitutes an
important applicat of least squares, To fit. the line by least
squares, the weights of the probits must be obtained. Now g is
a proportion,iﬁnd the assumption is made that the n animals or
organisms dre drawn randomly from some universe, wherefore the
theoreticad variance of ¢ is pg/n. Then by Iig. 8 on page 40, the
varianee of the probit ¥ can be written

M:’\‘." 2 dY\? 2
\Y o 2(59 "

Show by differentiating the equation relating ¢ to # that

0‘1,.2 = 0‘1?2 = -I-J'%
nz
10 (3, 1, Bliss, * The calculation of the dosage-mortality curve,” The Annals

of Apolied Bislogy, vol. 22, 1935: pp. 134-167.
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where z is the ordinate of the normal curve at the probit ¥. Then

Wy = —
il
is the weight to be applied to the probit ¥ in fitting the dosage-
mortality curve., Note that the probit ¥ i3 a quantity called a
percentile of a distribution. If the standard deviation of the(\
sampled universe is «, then the 2 (\\ \
Variance of the percentile = ?fz_“ \ O

#* N"

$

Sinee probits are by definition expressed in terms %{‘tu)e standard
deviation of the assumed normal curve, the q%@fh ty ¢ in this
problem is equal to unity.

y \./
/
&
NNV
L2
s W
\ ¢
AN
«" o
&N®
%\"“
\\‘;
e
OO
3
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CHAPTER X1
N

FOUR EXAMPLES IN CURVE FITTING
TITTING AN ISOTHERM KoY

ExaumrLE 1.
72. Formation and solution of the normal equations, For this

example, data taken by the Michels! et al. on carbor dipxide will
3 . M:\'\."

be used. The equation to be fitted is
{y denotes pu, pfé%sure times
@ydenotes density)

= 2
y=atbs+a+dr volume;
The parameters are not independent but}re subject to the condi-

tion that \V
y=1 whena: =1
This condition arises because 0£ the definition of the unit of volume.

8

Because of this COIldJ’E.lOll,
awl—bv}—d
and N\ N
y =@ @ — Db+ & — De+ (ot — 14
Weights: Ail y coordinates have equal weight; z is free of error.

Let ‘\.\,‘
=y— {1+(x-—1)b+(32—1)c+(:c — 1)d}

~@mv&t1ves
—x+1, Fo=—2%41 F;=—-z'+41

Noop-
F,=1, F,1s not needed since x is free of error

W =1 at every point.
L A, Michels, C. Michels, and H. Wouters, Proe. Royal Soc. (London),

vol. 1534, 1935: pp. 201-224,
212
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The following approximate values are known from previous
experience:

by = —0.006837046
cg = 0.000011392
do = 0.0° 1514

Then

Fo = gone — {1 — 0.00883705( — 1) + 0.000011302(a* <))
4 0.0°15(z* — '11]\ “

TABLES 1 AND 2

$%4 2

\
(FORMED FHOM THE OBRIGINAL DATA)“’;.\

Point No. —Fs —F, —Fa :'\\:-—Fu Sum
| 177 %10 5.51 X107 12490108 0.55 X 1074 7.07
2 2.25 5.40 3.08°\" 0.79 11.56
3 2.72 7.93 H330° 2.07 10,02
4 3.18 10.74 " 1135 3.09 28.566
5  3.66 14,15 _ON20.04 6.22 44.07
6 4.14 17.99 ~3% 32.39 10.05 64.57
7 4.41 22,200 49.31 14.84 90.96

Bum 22.33 83@$ 123.86 . 37.61 265. 81+

N
In this emmp&W = 1 throughout, with the result that Tables 1
and 2 menioned in Section 80 are jdentical. The minus sigos i
the headings’wvoid minus gigns in the table, The powers of 10
bring {iifdrmity in the denominations of the columns.

£\

T'hé original data were listed to more decimals than are in-
\dicated by the above table, and the normal equationy shown
3 here, it so happens, were {ormed from the original data, retaining
() &l decimals, then rounding them off to the number shown.
Exact agreement can not be expected, therefore, with the acceu-
mulated squares and cross-products that one would form in the
usual manner from the table above. The effect on the param-
eters, arising from the use of the extra decimals, is negligible,
and the eenclusions are the same either way.

The Sum eolumn provides a check, which should never he
omitted; it is formed regardless of the powers of 10; in fact 00
attention iz paid to the powers of 10 until the end, when the
solution is decoded. After the normal equations arc formed,

i
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the sums in Rows I, 2, 3 are each raised by 100 to take account
of the entries in the € columns.

Why Is it better 1o start off with 100 rather than 1 in the
£} columns, for the caleulation of the reciprocal matrix? Per-
haps 1000 would have been better than 100.

Note the symmetry in the reciprocal matrix, which is found
between the vertical lines in Rows 11, 12, and 13.

From the normal equations one may make up the following

tabulation of results. O\

B=-0.036%107° b= —0.00683705— 0.0°36 = —0.006837341 "
= —0.015X107% =0.0*11302+0.0715 =0.0* 11407\

D=-0.307X 107 d=0.0°151—0.0°307 = ~o.g"'\156

. a=1-b—c—d=1.00682600"

Est’d S.E2of b = 236.75 X 10—2-%2(extg,f\\1»9.3 x 1071%
w @ w4165 X 107242 ()= 3.40 X 107
« o« g 955X 107 03 E) = 0.209 X 107%
“ow g o2 (et) (236.75 K007 + 4185 X 107°
1255 X 1012 ~ 2 X 98.03 X 107°
42 X 2208 X 107 — 2 X 10.08 X 107°)
= 17.78010712
Bee Eqs. 21 and 22\%1‘.’]’67; remember that a is & function of b, ¢,

and d. O\
See also Exervise’l ahead.
A\ X

Final reslllts,fsir»the parameters:

"\
a =, 1hDO6S260 < 0.0000042
b =,5°0.0068374 3= 0.0000044 Standard errors estimated
/=Y 0.041141 % 0.0°18 from 4 degrees of freedom.

\j: —0.0°156 == 0.0°046

These standard errors appear to be small compared with the
parameters. However, it must be noted that they are calculated
from only 4 degrees of freedom. There is reslly not rauch that one
can say in the way of the prediction of future data, purely on the
basis of standard errors that have been caleulated from a single
experiment, and in particular if this experiment yields only 4

I
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degrees of freedom, as is true here. A consistent pattern of amall
standard errors, ih experiment after experiment, would begin to
assume scientific significance, and such is in fact the actual situa-
tion with compressibility data, though the other cxperiments, and
the caleulations therefor can not be shown here.

An important consideration was voiced at the outset in Chapter
VIII, wherein it; was stated that the rcal test of a caleulated cufye
comes when it is used as a basis for action. The form of equation
used here, and the method of fitting, have been tested suierdly in
this way. For instance, by means of this equation, theMichels
have caleulated various physical properties of carbor dloxide, and
they and others have carried out similar ealeulafions for other
gases, and always the results of these caleulabions have tied up
closely with whatever direct experimental \srork oxists on the
index of refraction, Joule-Thomson coefﬁ}iént, heat capacities,
entropy, and other properties, most ef@hich are difficult to meas-
ure directly. Manufacturing processds designed on the basis of
these calculated physical properti§sthave turned out to be correct,
thus bearing out the usefulnessiof the parameters so calculated.

This statement does not«¢ohtain any argument that these par-
ticular parameters are Jttter than any other sct that could be
obtained from the givew observations. It would take a long run
of experience in the\@se”of various altornative procedures for fitting,
in order to decide‘just what method is better than another. Such
comparisonssprobably do not exist.

Tt id hteresting to see what would be ths sum of squares i the
tesm dx* had been dropped. From Row ILT we find [ce.2] =
BIL6 X 101°; this multiplied by d2 or {(—0.0"156)2 gives 0.9 X

1075, which added to 0.33 X 10—% gives 1.23 X 10~% for the

& N “sum of the (Hope — Youze)? that would be obtained from fitting the
Y emvey =a-+ b ex?, We then find

10-8
olext) = 1.23 X 5 - 0.256 X 1078 {(dx* omitted)
We already had
a¥(ext) = 0.082 X 102 {dz* included)

Since the sum of squares, and hence ¢(ext), is so much lower
when the term dz* is ineluded, it appears from ihe mesagre
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evidence afforded by the four degrees of freedom of this one
experiment, that one is warranted in carrying this term.

One may also use Eq. 17 on page 165 for computing the effect
of dropping d.  One thus finds

d—01?
— o
88 = o (ext) (S.E. of d
0.0°156%?
= - —= -3
0.082 X 10 (U‘UQO i) = 09X 10 A,
Exercise 1. Show that when corrected for powers of 10, 'the
reciprocal matrix is A\
236,75 X 107* —08.03 X 107° 2298} 107
Al =1 —08.03 X 10~° 4165 X 10~ =308 X 107°

22.98 X 1078 —10.08 X 107° \2.55 X 107'2

These are the figures that were used ifing down the standard
errors of @, b, ¢, and d. Evaluated a5(a) determinant, this gives
Al = 4.6 X 1075, O

Ezercise2. The evaluation of the determinant of the coefficients
18 o

A = (77.53 X 10%)(53.30 104)(39.16 X 1019) = 0.162 X 10%2
(See Excreise 1 of Se;q.*é‘l, p. 161.) This result is not exact; the
discrepancy arises ‘from instability, and could be overcome by
carrying more deCimals.

Ezercise $n4&) Prove that the standard errot of the curve at
=118 O,f‘a;n& that at 2 = 0 it is the same as the standard error
ofa. "

(b)*'%hy is the standard error of the y intercept practically equat
torthe standard error of 57 Argue geometrically and analytically.
“\“73. A note on instability. As often happens in curve fitting,
these normal equations are unstable. One of the most sensitive
tests for instability is to compare the direct solution {already found
in the 17 column of Rows 11, 12, and 13) with that given by
using the reciprocal matrix as a multiplier; by such means we get
the reciprocal solution (pp. 165-166)

108 = | 151.06 X 236.75 — 654.02 X 98.03-+ 1233.8X22.98}1
=0.0237x107* '

N

0-3—2
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and in like manner (which the student should undertake as an
exercise},

10%C = —0.0508 - 107, 10°D = 0.2500 - 1074

These are in disagreement with the dircet solution found in Rows
11, 12, and 13, and thus instability is indicated, The direct solué™\
tion satisfies the normal equations to the last decimal, but, when
there iz instability, ma,nj) other golutions not too far away! {cotild
do the same thing.” The reciprocal solution, however, fobs not
satisfy the normal equations, the actual numbers being{ I against
151.06, 483 against 654,02, 919 against 1233.79. Adindicated in
Exercise 2, these discrepancics could be overfeme by carrying
more demmals

The insidious thing about instability is tl‘la?b 1’55 prescnce may go
undetected. For instance, i here we\h! onIy the * reciprocal
solution,” and had not tried to check )by substitution, we might
have aceepted it. The use of the x8eiprocal matrix as a multiplier
is in theory very fascinating, buitbas a practical matter in curve
fitting we should not wax toeehthusiastic about it. Fortunately
it does work to good adwimiage in many problems, as seen for
instance in Chapter }E*& R. A, Tisher’s Statistical Methods for
Besearch Workers. XJIn~ Section 36 also, the equations were
stable and no difﬁci!ﬂties arose.

¢

N o
A VEXAaMPLE 2. ANOTHER POLYNOMIAL

H T AND ¥ OBSERVATIONS SUBJECT TO ERROR

N ?4 The observatlons and theu weights. The polynomial |
\' '.y—a—i-bx-!—ca: - 43
is 1o be fitted to points in the zy plane, © and y both subject to

error. The observations on the coordinates are shown in the
accompanying table.

? Bee footnotes 10 and 12 in Chapter IX (pp. 160 and 161) for references
to Tuckerman’s paper and a note by the author on this subjeet.
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TABLE OF OBSERVATIONS (EXAMPLE 2)

& denotes the number of observations at a paint, s their standard deviation,
defined by

s = Klr Pl -t = %z res’ @)

with a similar equation for the standard deviation of the y observations.

For the x coordinates Tor the y coordinates /A
Poin KON
No. - . NS ¢
wo | et opeg | v e [ obed | N LN CE
value value N
1 2 | —2.28| 5 l0.154| 0.11 | 012940 | 0.00447
2 —1 1 —1.13| 6 52| .15 | LMWY 9 177
3 0 | —0d4d| T | 202y .20 | Q98! 8 264
4 1 1440 8 | .315| .2 %71 7 182
5 o | 190| o | .176| o3} 312 6 105
¢ 3 203 | 10 | .12a! g8"| 380 | 5 100
7 4 a1 | 7 | so7 a5 | 41| 7 294
8 5 5071 4 | .03 .52 j 520 12 288
9 6 .11 10 | o3| .61 | .590) 4 015
10 7 717 | 9 48%016 | 70 | 728 | 4 082
11 8 783 | N .176| .79 | 91 7 244
12 9 9.32 |08 | (154] .80 w2 | 5 442

75. A note on the o \served values. This ig an artificial example,
carried out undetides] conditions, in order to combine special
features of g:ﬁlﬁnber of practical examples that might have been

" chosen f{)&iﬁ‘ﬁstration. The coordinates observed (the “true”
point-s&éer‘e taken along the curve
N y = 0.2 + 0.05¢ + 0.0032% 3)

”'Tfhg standard error of a single observation on an coordinate was
\a%sumed to be 0.5 cm., and the standard error of a single observa-
tion on a y coordinate was assumed to be 0.06 1b. Artiﬁf:-ial
ohservations weve taken by using Tippett’s numbers, assuming
that the observations are normally distributed, according to the
{able shown in the appendix. Considerable departure from the
normal distribution would not affect the resuls appreciably. The
procedure can be described as follows:
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i. Read out N numbers systematically (ie., read up, or
down, or diagonally) from Part A of the appendix (p. 252).
Each number is a deviation, in units of &, or oy, as the case
may be, from the true value of whatever coordinate is being
ohserved, If desired, Tippett's Rendom Sampling Numbers
(Tracts for Computers, No. 15, Cambridge 1927) ean be used,
in conjunction with the table in Part B of the appendix, N is
the number of observations on a coordinate, as shown in the
accompanymg Table of Observations. N

ii. Take the average of these N deviations, and multiply it by‘ )
o, if an z coordinate is belng measured, or by o, if a y coordm&tc
is being measured. (The numerical values of . and gpare 1o
be discussed shortly. Asgsume for the moment that thcy have
been sefitled upon.)

iil, Add this deviation to the true coordinate to get the ob-
served coordinate, and enter it in the table. N\

iv. Compute the variance, or the sql}a‘r’QGf the standard
deviation, for the observations on each eporflinate. These are
shown ag ¢2 in the table. The formuleNs in the heading.

Q

The question arises how to weightybhe various values of X and Y.
For one thing, the weight of any\coordinate will be proportional
to N, but that is not enough; sthe precisions of single observations
are evidently not the same for the y coordinates as they are for
the z coordinates, judging from the s? columns. In order to check
the x and ¢ precisio (fm this particular set of observalions, s one
might wish to doMn practice, we may plot Fig. 21 to show the
suceessive value% ot s2N /(N — 1) for z, and of the same thing for ¥,
both plotted\agalnst z (y would do as well). $*N/(N — 1) forz
{or y) atyafy point is an estimate of the square of the standard
error of\hhe single observations on z (or ¥) at that point.

Although there is fluctuation of the estimates, there i3 not too

’,gngleh, and there is no trend.® Now the weighted average on
\the z plot is not far from 0.25, and the weighted average on the ¥
plot is not far from 0.0025, so it seems reasonable to eonclude
that the prior values of precision (viz., o, = 0.5 cm., o, = 0.051b.}
should not be changed. In practice, standard crrors are usually

8In practice one must have enough estimates to enable him to plot
Shewhart control chart, before making such siatemenls. However, here we
have & method (the use of TFippett’s numbers) that in the past has demon-
strated randomness, and these statements can safely be made.
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known pretty definitely {rom previous experience. Accordingly
we take 0.5 for the standard error of single observations on z
and 0.05 for the standard error of single observations on y, over
the cntive range. By recalling that weights are inversely propor-
tional to the variances (p. 21), we see that a single observation on
a y coordinate has 100 times the weight of a single observation
on an z coordinate (Eq. 16, p. 22). As a matter of convenience,

&5 o0 1 ’.\:\

2]

005 *

004 +57)

o

. -
D0 4 WIDNAVERRGE a

0025 A

vl

fa
It

N

.
.
.

SENfN-D FOR THE X COORDINATE
= N
7 STWpM-I BOR THE Y COORDINATE

"

TFre. 21. Fstimating the prccision:s;cf the observations, The chart shows
estimates of the squares of the gtandard errors of single observationa. A chart
of this kind will disclose trends and abnormal variations in the precisions,
though one shogd\ ave more points than this at his disposal.

then, we take upity for the weight of 2 single observation on z,
and 100 for thelaveight of a single observation on y.  This is
cquivalent 4 setting o = 0.5 for observations of unit weight.
The vah.(e;g‘;\ﬁf w, are then the same as the numbers N referring
o x, i ‘the table of observations, and the values of w, are 100
tii!nsé.’fhe numbers N referring to y.  (If the precision of single
“observations on gither & or y coordinates were variable over the
\ange of the points, obvious modifications eould be made in the
weighting,.}
76. Formation and solution of the normal equations. We shall
carry out the steps called for in Section 60.
st step: get approximate values for @, b, ¢. By passing the curve
through three selected points, approximate values for ag, b,
¢o could be found (see the reduced type on the method of selected
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points, Sec. 58), In this particular case, howover, we shall
instead use the true values of the parameters as approximations,
They are found in Eq. 8. Accordingly, we write

ap = 0.2
bo = 0.05 @
&g = 0.003

Of course, the final results will be the same, no matter w hat Yalues
we choose (within reason) for the approximations tio, bod co (cf
the reduced type on pp. 137 and 13%). N

2d siep: the derivatives. For the function beJQg fitted (Eq. 1)
we write

F—y—~(a+b:c+cx\)‘ (5)
A
and then find the following derivativeS' \“
Fy= —(bo+260X); ~F =1 (6)
F=—1Fb—-—*—X F=—Xz

whence (see Eq. B, p. 134),.¢

‘.'

4 2
L or-& = (bo A ZeoX ) + L3
AW Wy Wy
LA
Also we erte

DFa =Y — (ag + boX 4 coX?) (8)

3d step\ \nummcal values; Table I, Wo are now ready to
ca&cula\ “the numerical values of 1/W, 1/ W, F,, Fy, Fe and
Fop a.nd 1o compute Table 1, which precedes the matrix, Table 2.

(CNHR step: preparation of the matriz; Table 2. Now divide the
araiues of Fq, Fy, F, and Fg in any row by the corresponding value
of 1/ W, and form the sums at the right and at the bottom for
checks.

oth step: the formalion of the normal equations. The normal
equations are formed by the usual accumulation of squaves and
cross-produets from Table 2. The solution is earried out by the
routine outlined on page 158, and used previously on pages 82
and 83, and in the preceding example.

(7
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TABLE 2

THE FOURTH STEP! THE MATRIX FOR THE FORMATION OF THE NORMAL
EQUATICNE

{This comes by divisions performed on Table 1.)

Foltb\ VWP —VW-Fo -NW-Fo  NW-Fo Sum
1| 2813 —6.4136X10 1.4623X10% +7.7104X10™Y 30,8891
2 | 2052 —2,0968 0. 3386 —4.8807 19,5311
3 | 2524 —1.1106 0. 0489 +4.9016 2070799
4] 23.20 3.3408 0.4811 —7.2430 197780
5| 21.90 4.1610 0.7906 +1.8512,7>" 1 28,2028
6 | 2017 5.9008 1.7316 +1.56320 29.3748
7| 21.38 8.1458 3.1035 +1 4858 34.1131
8 | 20.20 10.2515 5.2026 =8, 3080 25.2461
9 | i7.64  10.7169 6.5481 Lh 8235 20.9815
10 | 17.00  12.1890 8.7395 N\ 2.5950 40.5244
Il | 18.99  14.8602 11.6426 ()" +2.9567 48.4585
12 | 15.35  14.3063 13.3334) —0.7046 42.2850

Sum | 255.62  73.3692 53,4928 5.0530 387.4650+/

~ 3

Cleared of minus signgand powers of 10, Rows 11, 12, and 13
lead to the following, ¢alics of the parameter-residuals 4, B, C,
and to the reciproeshmatrix shown below.

Q) A= -000241
»O B = 0.004306 ©
A& C = —0.000577
O 0.052767 0.0°3  —0.0%57
LNt att=] 00%  00%38 —0.0%4 (10
\~ -} —0.0%7 —0.0%4. 0.0°14

The adjusted parameters will be found by subtracting each
residual from the corresponding approximate value, sccording to
Egs. 6 in Chapter IV, page 52. The numerical results follow.

—ay— A =02 4 000241 = 0.20241
bg — B = 0.05 — 0.004306 = 0.045604 T (11)

a
b
¢ = ¢o — C = 0.003 + 0.000577 = 0.003577
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The reciprocal mafrix containg the variance and produet variance
coefficients, whence we may write the standard errors of the
parameters a, b, ¢, and of any caleulated y value or, in fact, of
any function of ¢, b, ¢. The diagonal shows that the

8.E. of 6)? = 0000276742 _
(8.E. of b)? = 0.0000638 A2)~,
(8.E. of ¢)? = 0.0000014¢2

With ¢ = 0.5 (the standard error of obscrvations of unit \w@;g\ﬁt),
it follows that the

N \
27
S 3

8.E. of a = 0.0083 K7,
S.E. of b = 0.0040 o\ (13)
3.E. of ¢ = 0,00059 i

whence AN

b = 0.04560 + 0.0b40/
¢ = 0.00358 = 0{)0059

77. The reciprocal solution. 'The reciprocal solution for the
unknowns A, B, C is obtalnegl'ab Tollows:
—A = 147.18 X 0.0277=>29.52 X 0.0003
~ 28,95, 0.0572 = 0.0241 X 107 (15)
—10B = 147.18 x\}\ooos — 20,52 X 0.6382
5=28.95 X 0.8381 = —0.4306 X 1071 (16)

—100C = —v\IA"r’ 18 X 0.0571 4+ 29.52 X 0.8381
OV - 42895 X 14275 = 0.5766 X 107! (17)

N
Thefe values of 4, B, and ¢ substituted into the left-hand
m:srgbérs of the normal equations give numbers that are to be
“Comipared with the right-hand members. The results are shown
elow.,

(N
@ = 0.2024 = 0,0083¢ ¢
(14)

Row Value of tle left- | Value of the right-
hand member hand member
I 147.27 147 1R
2 —~29.60 —29 52
2 28 98 28.95
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This close agrecment, however, required more figures in Tables
1 and 2 than were advised on pages 79 and 155,

78. Adjusting the observations. The calculated point cor-
responding to the observed coordinates X, ¥ can now be found.
We note that there will be a » at every point, given by Eqs. 10,
-.page 136. )

N = WilFo — FJiA — FoiB — FiC) O
The superscripts on I refer to the point numbers, as they did gy
pege 133, We use 4 = —0.00241, B = 0.00431,C = — 00058,
with the values of Fo, Fa, Fu, and I, already enberedjn?{l‘able 1,
page 223.  We shall adjust the observations only at Peints 10, 11,
and 12, for jllustration. O -

X .
Mo = oogay 001527 — 0.00241 +’714'3«>< 0.00431
_ 5141 XO00058) = 4020 (18)
1
Ny = ———  {0.01557 — 0.00241 4 7.83 X 0.00431
11 0002772 {0.01557 P’:OU% 47 X
<8131 x 0.00058) = 4094 (19)
1
Ay = ———— {—0.0045@ — 0.00241 + 9.32 X 0.00431
@ = Go0szed | XK o0l +
O - 86.86 X 0.00058) = —4.055 (20)

whenee, by applyiug Egs. 12, page 138, the residuals can be com-
puted at onde </ The required values of F;, are in Table 1.
At poin’p"%b}"' '

J'.V}: i MoFz = % x 4.029 X —0.00302 =_—-'0;_0416
g W S

o 1 4,029 @
S Vu= w_yMoFy = _AEO— = 0.01007
At point 11,
V, = % ¥ 4,004 X —0.00608 = —0.0567 -

(22)
4094 _ o iosg .
700

Ty =
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At point 12,
Ve=—40566X — O_lp? = 0.0859
—-4.065 (23)
Vy = —o— = —000811 A
Y )
O
- e
2 s O
28 a TR : \\J S
T T 2

7.0 5 85 85 20 a5
Fra. 22. An illustration of adjusted observations in curve fitting. The
ealeulated eurve and the 95 percent error hand are shown in the neighborhood
of points 10, 11, and 12. The error band is laid off above and below the col-
culated curve. The celeulated or adjusted points lie on the caleulated curve,
except for “errors of closure,” Compare with Figs. 16 and 17, pages 132 and 133.
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These regiduals measured off from the observed points in the
proper direction (see Fig. 22) give the caleulaled points, which
lie on the calewlated curve.  Actually the points so calculated here
do not fall exactly on the curve. Such discrepancies are trifling,
being of second order from the neglect of second and higher powers
of the regiduals. One may simply manipulate the end decimal
of V, or V, or both, in order o place the caleulated point

z=X— N,

Y=Y — :;: (Egs. 13, p. 138) ' O
exactly on the curve. A precisely gimilar situatioﬂ? arises in
problems of sutrveying wherein, for exact satisfa@t?on of the
geometrical conditions after adjustment, one ofténnéeds to manip-
ulate the end decimal of one or more angles atd sides (cf. p. 84).

By adjusting the observations, as is nownossible (Egs. 12, p. 138),
the residuals can be inspected individually before any conclusion
is based on S, the summation of w.¥y™+ w, V2.

Exercise. Compute the z and\y residuals for the other nine
points, and plot them. D

79. The standard error,ghthe calculated ordinates. Inaccord- .
ance with Eq. 22 on page:167, the standard error of the function

fla, b, ¢) is \\

2 A%
o = g? {0.000 @8 (dii) + 0.000 064 (d—g
3 df df

& d 2
6.000 0014 {Z) + 2 x 0.000 0003 = —
:-P\\ 1 ( d§) +2 X

*

da db

R\ df df df df}
O M ' b 0. 0084 — — 24
2 X 0,000 0057 -~ - — 2 X 0.000 0084 5 (24)

In particular, the caleulated y with its standard error for this
problem would be found by writing & + bz + ez’ for fla, b, ¢), the
result being

y = 0.2024 4+ 0.0457z + 0.0036x7
=+ ¢{0.00028 + 0.000 0006z + 0.000 05262°

— (.000 0168z% + 0.000 0014x*}* (25)
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If the factor ¢ in front of the brace be replaced by 1.96s, the
double sign gives the 95 pereent error band. This band, laid off
from the true curve, is expected to embrace 95 percent of the cal-
culated curves that would be obtained at any abscissa x in a large
number of experiments like this one. Unfortunately, in practice,
we do not have the true curve, and can only lay off the eror hand
above and below the calculated curve, as is done in Fig, 22, The\
band 8o drawn will vary from one experiment to another (p. 170},
Moreover, when s is not known, we ean only lay off a © confidence
band 7 (p. 169), calculated from an estimated value of'e (next
section). Tt is only when the number of degrees of fresdlom reaches
23 or 30 that the width of the confidence band can\be inferpreted
as an orror band, and cven then only in randowingss.

80. Calculation of the external estimate .0f\cr. The external
estimate of o (Sec. 13} is the sum (8) of tho weighted squares of
the residuals, divided by the number of d@r ees of freedom.  Row
IV in the solution of the normal (‘quatj,om gives

= X (w.V,? —E-wa ) = 1.88 (26)

The number of degrces of freednm iz 9, this being the number of
pom‘rﬁ (12) diminished byzthe number of parameters (3), whence
2\ ¢
S 168
a<(§m)——*—=0.19 (27)

Now, in thig Qxample, we were furnished with a prior value of 4,
0.5; p. 221 &lnd we are thus able to compute xZ, which we recall
s sunpl{S{ (p. 15). We thus find

s S _ L.68

\’ .’; _ x= 2 0.5
\”\, - . = 6.72 (28)
For 9 degreea of freedom the average value of x? would be 9. The
value just obtained is less than the average. Fisher's tables show

P(x*) = 0.87 (approx.)

which mterpreted means that, in randomness, in 67 out of 100
experiments x would be greater than 8.72,
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Examrie 3. A Formurs UseruL 1w Forestry*

81. The formula to be fitted, This example serves the purpose
of ifllustrating three features: i the fitting can be done with
logarithms, the constant or nearly constant characteristic being
suppressed or nearly suppressed to cut down the number of
figures required; ii. W is constant throughout; iii. the prior
value of o can be expressed in terms of some of the parameters,

so that, finally, the minimized 8 can be transformed into &)

and the fit of the formula judged on this criterion. All ghree”
featurcs owe their existence both to the form of the fitted f,t}nlition
and to the experimental materia! and procedure. One or more
of them, howover, is likely to be encountered in otherﬁwi)rk. I

z = the volume of & tree in'board feat .

v

X N
y = the merchantable height of the tree
z = its diameter at breast he'i;ght
then experience has shown that tj;gr’éfluation
x =\ (29)
predicts satisfactorily® thg"values of z from observations on y
and z, e
The particular set % data for consideration in the present prob-
lem consists of 6ﬁ~i:|0ints — meagurements on the volume, mer-
chantable heighit@hd diameter, of 66 trees. It will not be neces-
sary to displdy the full set of points for the discussion intended
here; theufirst six and the last will be sufficient. They come in
no particular order of size. The logarithms are written in the
thr'eq'ﬁ"ght-hand columns, for convenient inspection, since they
{ﬂ}l “bo needed in the fitting. .
82. Rewriting the function to gain an advantage. Looking at
the logarithms in the table of observations, we perceive that the

4 This problem was furnished hy Mr. Jesse H. Buell of the Forest Service,
Acheville.

5 Prancis X, Schumacher and T. dos 8. Hall, J. Agric. Res., vol. 47, 1933:
pp. 718-734; also Donald Bruee and Franeis X. Schumacher, Forest Mensura-
tion (MeGravw-Hill, 1085), Art. 140.

Q"
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first part of the figures, the * characteristics,” do not vary much;
in faet, in the ¥’ and Z’ eolumns the characteristic is unity all
the way down. What we need to do is to write the fermula so
that the variable part of the logarithms is brought into prominence.
This can be accomplished by writing the formula as

=d +by +¢ (& =logu,etc.) (303,

Dara vor Exavrre 3 .\:\

AN

Observations Logaril’;h;%s“
Velume Height IDiam. 7 :
Poins X Y Z X =\ = 7=
No. {board  (feet) (inches) log X log Y logZ
feet) :.\\.’

1 60 26 13.8 INMLT78 1.898 0 1.140
2 60 24 14.0 {N\NY 1.778 1.880 1.146
3 120 29 18. L% 2.079 1.462 1.258
4 270 38 2150% 2.431  1.580 1.322
5 320 a7 " 2.5 2.505 1.568 1.334
6 130 3¢ ~316.5 2.114  1.477 1,218

. PP . . :
66 320, N 18.8 2.505 1.732 1.274

Q\ Sums 152.136 102.451 84,090

and the-\ bpon lowering the characteristics of 2/, ', and 2’ by the
harmless device of subtracting and adding unity to each logarithm,
t}.rfwm.g finally at the form

\"\3 _ P WA (31)
where the double primes denote suppressed logarithms, namely,
=2 —1 =logz —1
y =yi—1=10gy~"1 @2)
=g —1l=logz—1
a”=a'~—l+b-{—c=10ga—1+b+c
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83. Formation and solution of the normal equations. By trans-
posing the formula alt to one side, we have the acceptable form

f - 23” _ (ﬂ.” +by” +m”) (33)
The derivatives of f are as follows:
fo =1, fo=-—b fo=-—c¢
far = =1, fo= ~y", fo= =2 | el
Then k ‘:\
1 et fat ot z’fz! s\
L =W ='£ij- -I-% +'%; (See Eq.8, p. 134.)
1 2 & (O
L AR
byt Wy War v
- i b2 NJoc?
='0.434? Zao. T ﬁ;;} zzw,} (35)

the last step coming from Exercise §cdon page 45.

In this investigation, and in {réjbuted experience, the standard
errors of z, y, and z have beeli found proportional to the gquan-
tities measured. To be specific

The S of « is 7 percent of =

,u'\"“d i Yy is 6 T T y
:,“( ¢ 13 z is 5 [ [13 z
It follows, the@,:ffi-om Eq. 13 on page 21 that
:"\:}'\"' ;c?,w _ (x__ﬂ' 2 _ 0'2
P * = \s,/ ~ 007
o\ 2 2
NN X Yo o
N _ (7Y - = (36)
C O ¥y (gy) 0.067
20 \? o>
e = (?) = 0.05°

wherefore
%, B (0'434)2 {(0.07Y2 + (0.088)% + (0.05c)"}  (37)

jvhich is constant throughout, independent
is the second of the two important features

of z, y, and 2. This
deseribed above.
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Now o is open to arbitrary choice, since weights are not ahso-
lute but are relative only (p. 22); and a convenient choice is
to put

o = 0.434%{0.07% - (0.065)2 + (0.05¢)%} (38)

whereupon W becomes unity al all points. The value of @, in this
problem, is not needed until at the end, when it will be corm-
pared with o(ext). (See Sec. 14, p. 29.) What is more i+
portant at present, b and ¢ will not be needed for the ca}cul\ation
of W, in spite of the fact that z, y, and 2 are all subjegtto error.
From a computational standpoint, this is a fortu.n{aie sttuation,
resting on the peculiar combination of the form ofthe fitted func-
tion and the standard errors of z, 3, and 2. \

As it happens, W being constant {(unity), t&oughout, the same
results for a, b, and ¢ would come from p{}:ﬁlal equations set up
under the (incorrect) assumption that ywinly the measurements
on volume are subject to crror, and that they are of unit weight.
But estimates of the parameters, hgwever important, are not the
whole problem; one ought alsowto tonsider the adjustment of the
observations for a study of 4he trends (if any) in the residuals;
one ought also to know,.fhe minimized S for considerations of
the fit of the formula, a@,»for example, by comparing o (ex!) with
the prior ¢, which for nately is at hand in this example as it
was also in the preteding one. If the errors in the diameter and
merchantable height are masked, none of the residuals in volume,
merchantable{ Qeight, or diameter can be found; moreover, the
entry in Row IV of the solution, which should be 8, is instead an
unknowimultiple of it, wherefore the possibility of reconciling
the known experimental conditions with the fit of the curve is
10stor put on a basis that is likely to do more harm than good.

Approximate values of a, b, and ¢ (hence also of a’’ ), after
being found by some method or other (see pp. 137 and 138), or
being known from previous experience, would be used in cal-
culating the value of

f0.= X‘” .__ (a‘ﬂ” +b0Y~ + c‘-j-z.”)

at each of the 66 points. The capitals refer to the observed
values of log  — 1, log y—1 logz~ 1.

Q"
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Since W = 1 throughout, Tables 1 and 2 of Section 60 coalesce,
and the normal cquations are symbolized as follows. A’ B
and C are the parameter-residuals, n

Unknowns
Row A" B C = 1 Sum
I 66 (Y] 12"} —[fol ...
9 _ [Y”Y”] . [YHZH] _ [Y”fu] ¢ \\
3 [zﬂzﬂ] - [Z”fﬂl ) \" \ "/
4 ot S

Since most of the adjustment is already contained if bhie approxi-
mate values of @, b, and ¢, a maximum of two ﬁgure}\\:vould suffice
in any column of X' ¥, 7", or f; and amiaXimum of three
figures would likely suffice in the normal equations, Such simpli-
fication is our compensation for the trofible of computing fy at
each point. ANV

The solution would proceed as or\page 158. Row IV will con-
tain the minimized S, correctly ﬁiiistributed among the residuals
in volume, height, and diargaéfe’r. The reciprocal matrix found
in Rows 11, 12, and 13 all’ contain the variance and produect
variance coefficients of.8.; b, and e.

As an excrcise, th%{eaﬁer might express the variance coefflicients
of @’ and a in terias Of ¢11, c12, ete., found in the reciprocal matiix
in the solution.\'oﬁ the normal equations for A”, B, and C.

84, Numetidal results. Instead of using approximate values of
a, b, and epand computing an fo at each point, Mr. Buell had already
adopt\eﬁ\tﬁhe somewhat longer proeess of using ag =by=¢0=0,
fo=X*, and solving for a’, b, and ¢ directly. His normal equations

878 symbolized as follows, directly in terms of the logarithms

ST’ = log Yop; ete).

Unkenowns
Row a b c = 1 Sum
1 66 [¥) 2] (X'
9 ('Y’ Y'z'] [¥X1
g [Z"Z’] [z! X'
4 x'X']
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Numerically, his equations were these:

Unknowns
Row a' b e = 1
T 66 102. 451000 84. 090000 152.136000
2 159.921325 131.022337 237,985322° LN
3 107 . 853544 195. 795651
4 356.809622.)
The solution was found to be N\ ‘
o' = —1.78222 = loga, a = 0.0165{' D
b = 0.87476 O (39}
¢ = 214228
~
Hence the relation found was R
x = 0.0165y0- 81t (40)

Not having at hand the complet8¥orm of solution, and in par-
ticular, not having § as it woul@*appear in the form of solution
shown in Section 61, page 158, shall here make use of Exercise 3
of Section 61 (see also Exdtoise 25 of Sec, 70}, thus getting

8 = 356.30050 + 152136000 X 1.78222

— 237.985322 X 0.87476

o\ — 195795651 X 2.14226
~.324 (41)
It will be\'ﬁbféd that S is here the small remainder left over from
the additien and subtraction of relatively much larger numbers.
To sgatwe two figures in 8, one must carry a, b, and ¢ through the
foudth decimal; this is so in spite of the fact that we can not pos-
SOy rely statistically on so many figures in g, b, and ¢, a fact that
ould be evident from their standard errors or from forest measure-
ments in general. This situation is to be contrasted with the
relatively few figuros that would be required for the normal equa-
tions if good approximate values ag”’, by, and ¢y had been used for
the caleulation of £, at evory point; with good approximations, the
sum [fofo] would itself be close to the minimized S, so that the
correction terms need not be carried far, The reader will realize
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that this matter has been stressed earlier (see, e.g., pp. 153, 175,
180, 182, and 209).

We can now make the external estimate of ¢ from the value of 8
computed above, using Eq. 21, page 28, with the result that

S 0.324
2 = ————= — =
o?(eat) = o = —eo— = 000514 (42)

This is to be compared with the prior oZ, which from the uhoic:;\
made in terms of b and ¢ on page 234 turns out to be . QO

o2 = 0.4342(0.07% + (0.06 - 0.875)2 + (005 - 2,L42)%
= 0.00356 LY W)

Thus o(ext) is about 50 percent larger than the ]::rior o%, The

possibility of this comparison is the third f@atﬁé mentioned at, the
start. N\

A more exact comparison of the two{gstimates of ¢ can be made
as follows. Tirst of all, we need %% "By the definition of x* on
page 19, N
,_f o 0.324
d ~ 0.00356
Since tables of chi u\éré do not run so high as 63 degrees of free-
dom, we use Fisher's function®

N7 V- V-1

which workout to be 2.3, giving P a little over 0.01. This is &
littlo lowwSignifying that it might be well to look carefully at the
data$or inhomogencities of various kinds.

. (F'would be interesting to make a study of the residuals as func-
tions of , or y, or z, but we shall not stop here except to indicate
how the residuals would be computed. From Eqs. 10, page 136,
we have

A=X" — (@ + 0¥ + ¢Z'"Yy  (at any point)

5 T'his remarkable funetion is written at the bottom of Table IIT in Fi_s%ler’s
Statistical Methods for Research Workers (Oliver and Boyd), sll editions.
When & is large, say shove 30, it is distributed very nearly as & normal deviate

with unit standard deviation.

2

X = 6% = 810 (44)
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whence by Egs. 12 on page 54 the logarithmic residuals would be

A X 0.434 - 0.07\2
hoedpe Mo (MeL00),
wg;! wﬁf a
A Ab 0.434 - 0.06\?
F = e f = m— T —_—— h
R e e R )
A he 0.434 - 0.05\2
Vo= fo=s —— = - {— "= 'S
Uty f War ( a ) re A { \\
N\
. f 4 ' o) N
since I dm_{", ete, RN

Certfain special features pecnliar to this problein‘ have been
mentioned, and the remaining details will be othitted; the reader,
however, will profit from Professor Schumachér’s comments on
the foregoing. A

85. Comments from Professor Francis X. Schumacher,
Duke University

{¢) The number of figures reqited in the solution of Mr. Buell’s
normal eguations could be cut down by the caleulation of an Jo at
every poinf, as emphasizédiin Section 84, but perhaps a meore
effectual saving of aQbr’ would follow upon transferring - the
origins of coordinages from the natural zeros to the logarithmic
means X/, Y7, Zs~We know from the first normal equation of
either of the gts“on page 235 that the fitted plane will pass
through thg;l\o:aajﬁthmic means, which is to say that the final values
of g, b, a,QQc will satisfy

N X'= o + 37 + 7
\'%?ﬁe"transfer of the origins will not only cut down on the number
of figures required, but will also eliminate the parameter ¢’ and
reduce the number of normal equations by one, leaving only b and

¢ ag the unknowns, &’ to be found afterward by noting that
P S B

The new sums and eross-products (to be denoted by appending
the sign ° to the brackets) would be found by making the
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following reductions from Mr, Buell’s equations:

[Y'Y' = 159.921325 — 102.4512/66 = 0.887880

[¥'2]° = 131.022337 — 102.451 X 84.000/66 = 0.400450
[Z'Z1° = 107.853544 — 84.090%/66 = 0.715240

[Y'X']° = 237.985322 — 102.451 X 152.136/66 = 1826453
[2/X']° = 195.795651 — 84.090 X 152.136/66 =~ 1.960557
(X' X' = 356.800522 — 152.136%/66 = 6.122213,;‘5“.

Four decimals will suffice, whereupon Mr, Bugllf%i;)rmal equa~

tions (p. 236) reduce to the following set, which'¢an be solved as

shown, £ \\ J
wal
Row b c A\ 1 Sum
I 0.8879 0.4904\ «  1.8265 3.2048
2 0.7152 1.9606 3.1662
3 Factors O 6.1222 9.9073
4 —0.55231 N\ ~0.2708 ~1.0088  —1.7700
IT AN 0 0.9518 1.3962+/
5 2, 08710 —3.7578  —6.59%
6 —2.14176 —2.0385  —2.9903
11 SV 8 = 0.3284 0.3264+/
g O3 B o= 0.8742
O ¢ = 21418 3.1418v/
.\O\\

The values of b and ¢ just obtained agree well enough with those
'“\bﬁ' page 236, but with fewer figures and less trouble; and the same
‘can be said for the sum of squares 0.3264 seen in Row IIL. Other-

wise obtained,

S = £.1222 — 0.8742 X 1.8265 — 2.1418 X 1.9606

= 0.3263

affording an interesting check. (The two figures 0.3264 and 03263
for S show a numerical comparison of the two expresslons in par ta
¢ and a respectively of Exercise 3 on pp. 163 and 164.)
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(b) The following suggestion is offercd here in the hope of
fostering first approximations as & preliminary to the real work of
fitting by least squares. If the merchantable portion of the tree
stem were of the same geometrical form in all tree sizes, the volume
would vary directly with the height and as the square of the

diameter. Hence useful approximations should be
b=1 O\
c=2 _ X O

-

=X -V - 27 (not needed in the plan jusftfoutlined)
‘K

The problem is then seen as that of finding thiseffect of changes
produced by the form of the merchaniable solid E{gon tree volume.

S

Examrre 4. A Sameir Svrvegler Canwep Goops

86. Object of the survey. Thisdexampic is described here,
because the solution has 3 wide. giiizéfsity of application in sample
surveys; in fact, the solution ‘wiven here has already been found
useful in other fields. Of ganrse, each new problem carried with
it a multitude of theoretieal and administrative details that are
new and different, and{these must be worked out and tailored to
the new requiremepts.

In laying pla,n.s}\ for allotments of canned goods for the year 1943,
the question of eurrent inventories of distributors arose and was
referred to tha Census, with the thought that sampling might be
introdus:e\\({to decrease the number of inquiries involved, and the
expengt ‘attached thereto, and — what is more important often-
t];mes-— to decrease the time interval between the collection of

<the data and the completion of the tables. A solution in the form
of & sample was provided by Messrs. Morris H. Hansen and
William N. Hurwitz, and was tried out in the Bureau of the
Census. The country was divided into 24 areas; and within any
one area, the establishments were divided into classes of five
different sizes, depending on their inventories of canned goods on
Date 1. An inventory was taken of the stock in every store on
Date T, but inventories of only a sample of stores were taken on
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L
55 4 FIFTH SIZE CLASS
© FOURTH SIZE GLASS
® THIRD SIZE GLASS
© SELOND SIZE SLASS *
504
484
40 4
TL)
g
354
=
4,
a3
)
g - 304
.8
3
=5
[
Z 259
n
=
201
+
15
ILE
5 4K THIR® SIZE CLASS
AN o
R s
. \; ) .//"\,sscown SIZE GLASS |
\ 4 L T . v T T y y y
/oo 5 10 15 20 25 L 3% 40 o

Fie. 23. Inventorics of canned peas on two dates for
Each point represents a store. The four lines are dra
lated relations for the four different clasees.

cause in this area no store of th

%= INVERTORY AT EARLIER DATE
4 HUNDAEDS OF CAMG

selected sample stores.
wn fo show the calew-
The first class is misaing, be-
¢ first class had canned peas.

N

~
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Date II, & month later. The sampling scheme diminishes the
amount of reporting at Date Il by requiring reports from all the
stores in the 5th size class (the highost), but from only half of

o

N\
a .\:\
NS ¢
g \
3
«
Wy 6
54
5
§§
23
5
z
L1

I”

e a 5 & 7 8 3
I 4 = = INVENTORY AT EARLIER DATE
.\\ N THOUSAMDS (F SANS

Fia. 24, Inventorjes for the fifth class, and the line through the centroﬁd.
Each point l'epl‘ﬂ.ﬂeijtfrs' a store. The dashed wedge shows two standard devia-
¢\ tons of the slope, caleulated from Eq. 57.

them i :tﬁ(;~\f4th size class, a quarter of them in the 3d, an eighth of
theﬂk&he 2d, and a sixteenth of them in the Ist or lowest class.”
From the sample, it was possible to make & usable estimate, for
~Laigh area, of the stock that would have been recorded by taking an

\ ' 7n order to produce reliable estimates of inventories on Date II, by area,
the sampling ratios were changed for smaller aress, depending on the sizes of
the stocks on hand. The figures just given constitute a typical set of sampﬁll_g
Tatios for one of the largest areas. The size class in which a store belongs is
determined by the number of cans of all kinds of goods on hand — peas,
beans, soup, meat, ete., — but the analysis is carricd out for each commodity
separately., This explains why the size classes for peas overlap in Figs. 23

and 24: a store with a large over-all inventory may be small in peas, and
vice veraa.
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inventory of all the stores on Date II. Moreover, the design of
the sample was such that the reliahility of these estimates could
be made on the basis of some initial trial samples, and sharpened
by further trials. Some of the underlying theory can be ap-
proached in terms of curve fitting, and will be presented as such
here. A fortheoming publication by Messrs. Hansen and Hurwitz\
will contain many other interesting aspects of the problem;\imr-
ticularly from the sampling angle. O
a7, What the sample gives. Let the subscript i dendte the size
class. There being five size classes in any area, ¢ wﬁl: yun through
the values 1,2, 3, 4, 5. Let the subscript j reier to a particu-
lar store in the sth class. Then j will run thtough the vahies
]’ 2’ sy R x’\\:
n; is the number of estabii%:hfﬁents sampled in the
ith class )Y
N is the total numbér’ of establishments in that
class A\
x;; is the inventory (number of cases of peas® on
hand)(in the jth establishment of the ith class
.ompﬁbe I (known for every store)
Zi 13\5& inventory of this same store on Date 11
sy (known only for the stores that are in the
AN sample)

a\-{\E :c,-,-'= the complete inventory of all storeﬂ.in the ¢th
1 class on Date I (In this summation, j Tuns

N from 1 to Ny, to include all the stores in the
\d class. X, is known.)

O )
gy = ¥ @y = the inventory of just the sample stores in the
' =" o stratum, on Date I~ (In this summation,

j runs from 1 only to 55, since only the sample

retallers are admitted in this sum. i ia
known.)

$ For convenience, the analysis will be carried through with reference to
canned peas, though ohviously aay other comn_lodlt.y or commodity group

could be substituted.
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Ne
Z; = } zy, similar to X, except that this is for Date IL.
=1 (Zy is to be estimated.)

g
2y = }:z,-j, gimilar to z;, except that this is for Date IL
! {z; is known.)

.,
1

"\
Z; = the established inventory on Date II for ‘the

sum of all the five classes in this area. ¢ \)
7'\

88. The estimated inventory and its standard erroth “One way
to estimate the inventory for class 7 on Date II is tosay that it is
proportional fo the inventory of that class on Date\l‘, in accordance
with which we write ¢

]
o

/A
1

-,
1

;= bX; Y

Then O
5 O

Z = _);lzs =Zi+Za+ Zs + Zy + Zs (47)

(46)

is the estimated total inventdry of all five classes in the area on
Date II. Curve fitting gpteié the problem in the determination of
usable values of b; frqm}the sample of stores in each clags, and in
the calculation of é\‘vériances of the estimated inventories.

The assumptign will be that, except for accidental influences,
such as weather;“delayed shipping schedules, and mistakes in
counting, alk the stores of size clags ¢ would increase or decrease
about the §ame relative amount between the two dates. This
assun}}\kﬁoﬁ, in this problem, has been found to lead to useful
resulis:  Of course, outside this particular field, or under other

Mqoliditions, the same assuraptions might lead to difficulty. It
$ is'only by careful investigation that one is able to say in advance
under what conditions his assumptions will lead to usable predic-
tions. Of course, the assumption that the inventories are each
about the same on the two dates will be found violated by many
individual stores, but on the whole it will be close enough for the
purpose intended.

In evaluating the error in the slope by, we recognize the existence

of accidental influence of variation in both &;; and zg;.  The bigger



[Ca. XI] FOUR EXAMPLES IN CURVE FITTING 245

the inventory, the bigger the standard error of the accidental
variations. Hence we shall put

W . = l‘ (48)

T mi:j

ﬂ'z‘_’_z = Sﬂ"jﬂ’z (49?\
wherein ¢?, as usual, is the standard error of observations of¢hnit
weight. We might write similar equations for the weight and
standard error of z;; (inventory of a sample store on Date I1), but,
if the two inventories &;; and 2y are not greatly,tdiﬁerent, it
will be sufficient to make the z and z weights equal, hereby writing

1

Wa, = Wy, = ;‘;’,\\; {50)
and ,\ N
Tz ,2 = xéfjé'ﬁ"’ (51)

iy
The standard error resultiqg;fiiirﬁ the accidental influences on
X; on Date I can be found a.s’.’fdllows:

. .
XM:\X‘- = E x‘ij‘ (52)
'\\,/ i=1
Hence by the regilt obtained in Exercise 2 on page 42,
g%‘i%é’if + g’ﬂz too gz‘f"';z
'\\"\' = (2u + T2 T +a,) o = o' Xs (53)
.ﬂfe\here take
'..\ﬁ,
'"\;‘,; F=2a;— bixij (54)
N\ Then
o Fafz  Fsfs o point 4, Bq. 8, p. 134)
Wy Wz
2
b 1 _lak (s5)
wy  Wa Wiz

wg; is here written for the weight of either z:; OT 2¢j.
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The normal equation for b; is shown below. The subscript 4
on w, &, and z 18 omitted for convenience, and the sums (2) are
taken over the sample stores (i.e., j runs from 1 to n; while ¢
remains eonstant}.

b“ = 1 C
> wa’ 3wz 1 QO
L4b° 1+ b Ko
N
The resulting solution for the slope is AN
X ez a b B 3 o 2,
b = 3w (Compare wit q..w;{@n p. 3L.)
- T 2 — ol '::\\j (56)
2w % A

sinee w,, 2y s to be counted equal:@p’ﬁnity (Iiq. 50) and z¢ is
the inventory of the n; sample stares on Date 1. Note that by
the value of b; just obtained,\the line is to be drawn from the
origin to the centroid of thel 2; points. The variance of b; is seen
from the normal equatiofivto be '

b2, L+Dd2

€2 N |-’7
crbx\— ¥ wa? & i Ly (87)
Now for théestimated inventory on Date 11 we recall that
O 5 5
OV Z= T Zi= LbXi (47)
\ i=1 i=1

#
|

whé’reupon, by the result obtained in Exercise 3 on page 43, 1t

~dollows that
/ 2 5 2 2
T2y _ 42 b 9x:
(Z) ? 21[(5) M (X,-)]

N\

5rp+p2 1
= 2 2 —_ 58
7 z=21 b + X, (&)

The first term in the brackets arises from the sampling error in
the slope b;, which will vary from one set of sample stores fo
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apother. The second term arises from the fluctuations to be
expected in the complete inventory X; at Date L.

Tt remains to estimate o It is best to do this for each class
separately. Since both zi; and z; are assumed to be subject to
the influence of chance fluctuations, we measure the residuals from
each poinf perpendicularly to the line z = by, and write

1 'wz" res; 2
ePleat) = X ——  (CL.Eq.2L,p. 28) (BN,
j=1 T — { N\
&
i 1"68;‘;.'2 e N
- - . 0":" 60
et TR Y Q@

The factor #; — 1 arises from the reduction of n; by‘"g\.t:ity for the
single parameter b..

£

AN,
Perhaps the simplest way to evaluate the m\of the weighted
squares of the residusls (the summation d¢31 § called for in the
formula just writien) is to measure efch Tesidual graphically,
square it, and divide by the value of #;; as read at the foot of
the perpendicular dropped fmm.ﬂ;'eobserved point to the line.
Another but theoretically Jess exact method of evaluating
this summation would be sitply to calculate the residuals from
the line by the formula/s
<Re3idu&1 = gy — by 61}
ag if they weré\meéasured in the vertical. The sum of the
weighted squares’ calculated with vertical deviations will be
ahout halt"the sum of the weighted squares caleulated with
perpendidulér distances, and the factor 2 can be applied to

comg{élg}a.tfe.
O\ .

T vt be sufficient for the purpose to set b; in the brackets of
E¢58 equal to unity, an assumption glready made in the weights,
and justified by the slopes in Fig. 3. With this simplification it
is found that

2 5 2 1
(C‘FZE = Z..l o (ext) [;" + 3{“] | (62)
The five terms ealled for in the summation over i on the right-
hand side are the five separate values of (og,/%:)° for the five
inventories Zy, Za, Zs, Z4, Zs.

Q.
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Fig. 23 shows a plot of the points for canned peas for the stores
in the 2d, 3d, 4ih, and 5th classes, in the state of New York.
For this particular commodity, there was no store in the lst class.
The units of measurement are designated by the scales. The
slopes of the four lines are by, b, by, and bs. The scatter of the
points is more than one might hope for, but the method givés\

useful results nevertheless.

Fig. 24 shows the points for the 5th class separatoly, \mth a
wedge laid off each side of the line to show the width. of Iwo esti-
mated standard errors. This wedge is 1ndlst1ngu1shable from the
95 percent confidence band. L&

83, Summary of the errors to be consideredy effect on sample
designs.” There arc two kinds of problems that arise in sampling
inventories, and we might designate the 48 Problem A and Prob-
lem B. Problem A consists simply of ganipling & pile of schedules.
Every store in an area (e.g., New, ¥aork stato) has presumably
gsent i an itemized schedule showiiig the number of cans of peas
and cther commaodities on hagrrdoélt- a certain date. In the discus-
sion that now confronts uspthis date was Date II, but this is
unimpertant so far as t}\ & description of Problem A is concerned.
The question is how to{find, by sampling, a number (an estimate)
that for purposes of\s}tlon can be used in place of the total inven-
tory of peas conthined in the entire pile of schedules. ‘This is the
problem, regardless of whether the responses written on the
schedules aferorrect or not; and the error in the sample estimate
will besthe)difference belween that estimate and the actual eount
contaiied on the schedules, whether it be right or wrong.

']\E‘]JE number of stores is large, perhaps in the thousands. The

'reason for taking the sample would be to hasten the processing®®

of the data, and to get it done for less money. The pile of inven-
tories might be so big, and the deadline so short, that there is time

® The author is exceedingly indebted to Messrs. Hansen and ITurwitz, not
only for permission to use their exaraple, but more especially for asslstance
rendered in nunierous discussions, during which the recognition and evalustion
of the five different sources of crrors were evolved.

10 The term “ processing of dafa ” refers to office operations in the nature
of editing, coding, transeribing, punching and tabulqtmg, posting and con-
sdldatmg, in the production of final tables or summaries.
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to work with a sample, but not with the complete count. So far
as Problem A iz coneerned here, there are two mutually exclusive
sources of error, which may be outlined below.

1. The stores that are drawn into the sample are designated
as the sample stores.  In one particular sample survey these are
a particular set of stores. But if the sample were redrawn from
the same universe of stores, there would be a different set of
sample stores, and another estimate Z of the total count. Tte SN
follows that there is a sampling error in the estimated togal .
count, and a sampling error in the caleulated variances, arising
from the selection of sample stores. N
Messrs. Hansen and Hurwitz have made an a@{éxjmate
evaluation of this source of error, and their resultdsy

5 Ni—ni Nl %\’
3 = ok Tt U s 3 ]
oz = £§1Ni -1 ﬂ-sagl (z‘, \J@x;) (63)

If the factor (Ny — )/ (N: — 1) is\Jeplaced by unity, this
error is seen to be shout half the folrih source of error men-
tioned below. This factor, incidentally, reduces the first source
of crror fo zero when all the sehedhles of a class are processed,
for then N; — n; = 0. A\

ii. The first soutee of error can be decreased by using an ap-
proximate relationshig“between x and z, provided one exists.
An assyraption 18 L;aé'f& if it makes useful predictions, If some
other set of sssuMiptions furns out to be better for purposes of
prediction, and\f the extra cost involved in office procedure is
not too gregh, change might be warranted. A change in the
assumptiohyof & relationship will produce different results, not
only irf #h& estimated total inventories on Date 17, but also in
the &stimated variance of that total inventory.

.s%}urces i and ii do not both exist simmltaneously., Messrs.
“Hinsen and Hurwitz, in their evaluation of the sampling error

¢\ Y(mentioned above), did not make use of any assumed relation-

N
%
\ }

*" ship; henece their formula applics to source i only. There is no

way of evaluating the geeond source of error analytically, even
when it exista.

The effect of either or both of these two sources of error can be
reduced to any desired degree by taking a big enough sample.
Messrs, Hansen and Hurwitz wished particularly to reduce
the error in the fifth class (the largest inventories); hence
they took ail of it. A 10 percent error in the fifth _class would
amount to as many cans of peas asa 50 percent eIror 10 o1E of the

lower classes.
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Problem B includes some other aspects that need to be con-
sidered when one takes into account the influences that affect the
figures recorded on the schedules. In this problem, the inven-
tories for Date IT would ordinarily be collected on a sample basis,
and the reports that have been received up to a cerfain deadline
date would be processed. The action that is to be taken (policied N
in distribution) will affect all the stores in the area, those insthe
sample, and those not. A number of sources of error misthe
considered. >

iii, Late reports introduce an error. It would of Bourse be
dangerous, if not folly, to assume that the late repotts Wre o ran-
dom ssmple of the universe. No attempt is made here to eval-
nate the bias arising from late reports. \

In a sampling project, the total numbcr’&’reporting stores
may be so small that individual attentign.ean be given to them,
to reduce the proportion of late repm*,tsxaald the unecertainty
introduced by them. For instance, bhe might send out tele-
gramg just before the deadline to. bring in some of the reports
that threaten to be delinquenty® Moreover, one might subse-
quently follow up sowme of th&late reports, to decide, on the basis
of empirical evidenee, which way and how much the late reports
affect the estimates. .\

iv. There are a{do‘m errors in the respenses of the sample
stores, and there are fluctuations in their inventories owing to
extraneous nafurel influences (such as the weather and freight
tie-ups in‘aadl out), all of which throw the points away fromn
whatever telationship may otherwise exist between the inven-
torieg-arlthe two dates.

fesource of error is the first term in the brackets of Eq. 58,

.and 1t is seen to be smaller as z; increases, which is to say that the

odourth source of error grows smaller as the sample grows bigger.

~~\\ This source of error, unlike the first and second, can not be
reduced to zero by taking sll the stores in any class.

The 2-gigma band in Fig. 24 is calculated from Eq. 57 and
corresponds to the first term in the brackets of Eq. 62. This
band shows how large a sample must be taken to reduce the
fourth source of error to some desired degree. An assumed
;e}a’(cldonship other than the one adopted would lead to another

and.

Deliberate errars of reporting are usually not random, and
constitute an insidions problem of another kind. It is conceive-
ble that under-reporting cancels out, as when X; and z; are both
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reported as just 50 percent of their true values; b; would be
twice as big, but Z; would be unaffected.

v. Random errors of response, and extraneous natural influ-
ences are present, not only in the sample stores, but in the
reported inventories of all the stores. As a consequence, the
total inventory X; of any class is affected. The effect of this
error on the total inventory Z; is evaluated by the second term
in the brackets of ¥q. 58. O

vi. There is an error in Problem B arising from the assumpl, "/
tion of a particular relationship and weighting. This corre-
sponds to the second source of error, mentioned under Bfoblem
A, Apain, there is no way of evaluating this source gnbl;}gchlly.

\

N\



APPENDIX

Tapres For MARING Ranpom OBsErVATIONS FOR CrLass
[1LUSTRATION

Each number represents one obscrvation. The numbers may, be
taken out in any order — across, cornerwise, or in any systematic
fashion that does not make use of the size of the number, QO

N

Parr A: Normal DeviaTEs TIRECTLY IN Uhqmé‘ OF THE
STanparp ERROR O

(This table comes from s paper by Edward’L. Dodd, Boletin
Matematico, Buenos Aires, Afio xv, 1942, fip? 76-7, with the kind
permission of the author and editor. NFhese numbers were ob-
tained from a transformation of the\Alst two pages of Tippett’s
Random Sampling Numbers.) %

N

—0.54 042 —0.26 2088 0.8

: 0.23 —0.48 0.16
—0.21 1.67 =—1.02 —l.08 0.58 0.00 —1.13 —0.81
--0.60 0.67 —0.41 ~0N9 —0.37 —1.23 0.50 0.74
—1,58 0.068 —1.22 .8 Db.28 0.26 0.8 ~—0.19 1.16
—0.60 1.37 -1.‘0&\{3 1.30 0.53 0.2% 1.18 0.37

0.22 —0.57 g}o —0.97 —0.55 0.30 0.2y —0.59
1.45 —0.69 0% 0.11 1.14 0.26 0.01 —0.62
—0.84 0.79, 7=9.9 ‘0.68 —1.72 1.01 1.15 0.56
1.78  —0.5TAG/1.58 —0.84 —0.64 1.19 —0.86 0.89
0.93 —1.00\) —0.57 0.01 —0.41 0.55 —0.26 0.57
0.17 0% 1.45 0.33 0.36 0.61 0.81 0.7¢
—1.27 . \0749 —1.17 0.40 —0.77 0.00 —1.45 --0.70
0.48 & VD.03 0.17 —0.31 0.6 —0.40 0.97 0.37
—0.883%—0.77 —0.03 0.68 —0.56 —1.02 0.24 0.12
Q.3dy ~0.06 —0.64 0,07 —0.99 0.38 0.19 1.72
RS
\13‘12 —0.91 —0.44 —0.26 1.8 —0.19 —0.57 2.62
.70 0.38 0.17 1.48 0.73 —0.97 0.11 0.73
0.50 —0.32 0.63 0.48 . —1.19 0.50 —1.14 0.02
0.93 —0.22 —0.22 1.85 0.17  —0.27 0.24 —0.44
0.81 -—0.33 0.24 .08 —-0.60 —0,20 0.00 1.11
1.54 0.56 —0.46 —1.45 —0.54 —1.27 0.35 —90.13
—0.40 0.33 0.26 1.5 —0.43 —1.2¢4 —1.05 —0.05
1.3¢8  —0.08 0.0z —1,50 0.39 —1.33 —0.10 —0.18
1.42 1.47 —0.58 0.55 —0.24 —0.82 0.33 —0.65
0.77 —0,82 ~—0.56 0.72 —2.36 0.53 —1.12 —0.86
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Part B: NormAL DISTRIBUTION OF THE NumeErs FroM (0000

To 9999.

Crass INTERVAL .20.

(This table is to be used In conjunction with Tippett's numbers,
stances where a longer series than that in Part 4 15
required, or where it Is desired o use pages of Tippett's numbers,.
other than the first two.)

in circum

N

Interval

Cumulative

Ares of

Intervals for '\Cgﬁter

S : Tippeit’s numbers\./ of

Center Limits ares interval {0000 999%}.}‘ interval

—_ 0 2¥7)

_3.8s —8.7¢ 0.000 1078  ©.000 1078 0000 " —3.8¢
—~3.6 —3.5 .000 2326 -000 1248 0901 ~3.6
~3.4 —3.3 - 000 4834 000 2508 Q0020004 -3.4
-3.2 -3.1 000 9676 000 4842 £5\9005-0009 -3.2
—-3.0 -—2.9 001 8658 " 000 8982¢ ¢ 00100018 -3.0
—2.8 =27 003 4670 “001 6012 0019-0034 —2.8
—-2.6 —2.5 .006 2097 002 7429 0035-0061 ~2.6
—2.4 -2.3 -o10 7241 -004 5144 0062-0106 ~2.4
-2.2 =21 017 2644 007 1403 0107-0178 -2.2
—2.0 =19 098 7166 w3010 8522 0179-0286 —2.0
-1.8 =17 "044 5655, 015 8489 0287-0445 ~1.8
—-1.6 -—1.3 “066 8OTALS 022 2417 0446-0667 -1.8
—-1.4 -1.3 -096 065 029 06680967 —~1.4
—-1.2 =-1.1 -18546661 -038 8656 0968-1356 -1.2
—-1.0 0.9 - 1840601 048 3040 1357-1840 -1.0
—0.8 ~0.7 9417 9637 057 9036 18412419 -0.8
—0.6 —0.5 > .808 5375 066 5738 2490-3084 -0.6
—0.4 —6.3,.8).382 0386 078 6511 3085-3820 =0.4
—0.2 —0h; T .460 1722 078 0836 38214601 {2

0 oD “539 8278 070 6556 46025397 0

0.2 0.3 817 9114 078 0836 5308-8178 0.2
O'N\"M 601 4625 073 5511 §179-6914 0.4
0.6\ 0.7 758 0363 066 5738 6915-7570 0.6
0.8 0.9 .815 0309 057 9036 76808168 ?.3
10 1.1 .864 3339 048 3940 8159-8642 +2
N1.2 1.3 .o03 1905 033 3656 8843-0031 2
1.4 1.5 1933 1928 029 9933 0032-9331 } 4
1.6 1.7 -055 4345 022 2417 0332-9553 1.9
1.8 1.9 -071 2834 15 8489 0554-9712 18
2.0 2.1 .982 1356 010 8522 9713-0820 2.0
2.2 2.3 "980 2759 007 1403 93215892 22
2.4 2.5 .008 7903 004 5144 93039937 24
2.6 2.7 596 5330 002 7427 9% 58
2.8 2.9 .008 1342 001 6012 g 20
3.0 3.1 .000 0324 Q00 8082 9931—9332 39
3.2 3.3 "990 5166 000 4842 99909 4 32
1 55 090 7o 000 2008 9995 89 36
) 7 .99 8 :
3.5 3; 1 » 000 1078 9999 3.8
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INDEX

(The numbers refer to pagea,

Adjustéd observations, 2, 16; weights
of, 21, 33, 46, 66, 68, 85, 90
Adjusted parameters, weights of, 16,
167

Adjusting sarople frequencies, 96 £,;
by iterative proportions, 115; by
the Rruyére method, 124; by the
Stephan method, 121; when only
one ¢ell requires adjusiment,
119

Adjustment, formulas for, 52, 74,
128: geometry of, 132, 133, 142,
144, 228; nature of, 13; numerieal
illustration, 81, 227; plane triangle,
7, 60, 74; procedure, 6, 139, 140;
segments of & line, 8, 80

Adjustment for bias, 10, 127

Adjustment of parameters, formliigi&i
for, 52, 136; second, 62, 180 ™

A C. Amvxenw, 16, 19, 160%73

Alternate hypothesis, 280 )

Analysis of va.riance,\i’\ﬂ 29

B. L. ANpERsoN,/IN3

Approximate vélues of parameters,
51, 52, 137, ¥53; ‘method of aver-
ages, J}?ﬁ} method of selected

: -poim'{,-“ 38: method of zero sum,
137\ '

Adziliary constents, 91, 94; number

Averages, method of, 137

BessmL, 27, 60

Bias, adjustment for, 10, 127; detec-
tion of, 11

3. D. Bincman, 159

Raymonn T. Biror, 27, 29, 88, 169,
173,175

Proper names are in capitals)

C. I. Buss, 210

MaxiMe BbcreR, 58

Donawp Brucr, 231

Pavw 1. BrRUvERE, method, 123

Tusse H. Buern, 281, 238 ¢\J)

N\

Caloulated ourve, 16, 18,132, 133

Caleulated points, 18,330,132, 133;
possible and iggf{)!’isible positions,
145 9

Caleulation ef\mean and standard
deviatipm\\f{)(l; rapid method of,
151'.'\'“

Ngrhaw CaMPBELL, 137

Cauchy distribution, 39

. XQauchy method for obtaining ap-

al

proximations of parameters, 138

Cell, definition of, 98

Cell frequency, 98; adjustment of,
99; estimation of, 101

Centroid, 174, 181; see also Quasi
genter

Chio’s pivotal expansion {of deter-
minants), 161

Chi-square, definition of, 15, 22, 27,
88; distribution of, 141

Chi-test, 15, 18, 132

Closure, error of, 8¢, 109, 228

Condition equations, 50, 8L, 132;

_ derivatives of, 3l; geometric,

B9, 70, T6; numerieal values of
derivatives, 71; reduced, 53; with-
out parameters, 59

Confidence bands, 169 170, 171,
230; see also Error bends

Consistency; s5e External consist-
ency and Internal consistency

Controls, 100

257

Q!
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Corner check (sum check), 72, 155

Clorrelates, or corrclatives, 53

Correlation coeflicient, 177

Covariance (product variance), 19,
160

Curve; caleulated, 18, 132, 133;
dosage-mortality, 210; true, 132,
133

Cuorve fitting; an isctherm, 212;
graphical considerations, 130, 143;
miseellanecus funetions, 208; poly-
nomial, 172, 218; the exponen-
tial and its logarithmic form, 161;
the exponential with a linear com-
ponent, 203; the hyperbola and
jis logarithmie form, 204; the
hyperbola with g linear component,
206; the lins, 173; the mormal
equations, 136; the parabola, 187;
the purpose, 128

Esmanven CzUuBER, 142

Data, object of taking, 1 SN\

Datum, arbitrary, 151 L
Harorp T. Davis, 173 a0\
Degrees of freedom, 18, 3& a1
Deviates, normal, 210, %
Epwarr L. DODD,,2§2
M. H. Doourrinnl 56, 157
Dosa.ge—mort{ﬂ%y curve, 210
P4
J. T, Eﬁ%m, 60
Equations of condition;
¢ditibn equations
\E;ror, in transformation to loga-
rithms, 44; of closure, 84, 103, 228
Error bands, 168, 171, 230; see also
Confidence bands
Errorz of sampling;
errars
Estimate of o, by external consist-
eney, 27, 28, 34, 230; by internal
coneistency, 29; unbiased, 27, 168

see Con-

see Sampling

INDEX

Exponential; logarithmic form, 191;
with linear componcnt, 203

External consistency, 27, 28; sce also
Internal consistency

External estimate of o compared
with prior o, 250

MorpEcasr Ezngisr, 138

Facc totals, 112

R. A. ¥FisErr, 18, 22, 28, 3& /34,
168, 169, 171, 172, 209 21‘8, 230
237

Forest mensuration (azé.lmple) 231

Lesten R. FRANEELS 32

Freezing (near™_ipddcterminacy of
-equations), (B0

Hoquency &‘}H frequency), 98

W. RS G’AJNES, 198, 207
G, R.Gaussg, 188

_GiArss, 15, 16, 27, 53, 54, 56, 58, 59,

*60, 00, 140, 141, 157, 159, 160,
167, 180

Gause brackets, 54

Gauss symbols, 157

General normal equations, 55

Cieometric conditions, 59, 70, 76;
solution without Lagrange multi-
pliers, 62

Corrano (v, 184

M. A. Gesnarex, 159

Goodness of fif, 18

Graphical considerations of curve
fitting, 130, 143

F. pog 8. Haww, 231

Morris H. Hanaew, 47, 240, 243,
248, 249

Hatchability of eggs, 82

J. F. Hayrorp, 65

HeruzrT, 142

Harowr HorELiing, 169

E. E. HousEMmanw, 173

Davio Huug, 12
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) 3

Least

INDEX

wipriay N, Hurwrrz, 240, 243, 248,

240

Hyperbola, generalized, 204; loga-

rithmie form, 205; with Llnear
component, 206

{Iypothesis, alternate, 28

indeterminacy (nesr indeterminacy),

160, 161, 163

Information (Fisher), amount of, 22
Tustability, 160, 217
Internal consistency, 29;

see also
Fxternzl consistency

Inverse matrix; see Reciprocal matrix
Isotherm, fitting of, 212
Tterative proportions; method, 115;

gimplification when only one cell
requires  adjustment, 119; three
dimensions, 117; two dimensions,
115

Troman L. Keury, 158 £
J. M. Krynes, 12
Crances H. Kusaretgy6d, 140, 145,

#8 3

184 :

L. coeflicients, 55, 59, 134, 135
LAGRANGE B8

Lagradgs,) multipliers; caleulatione

of {01, 92, 93, 104, 109, 119, 136;

Jaethod of, 53; normal equations
(“for, 82, 86, 109, 111; number of,

\ W

EB, 95; solution without Lagrangs
multiplicrs, 62

gruares; computation for
fitting curves, 158; formulation of
general problem, 49 fF.; method
of, 15; principle of, 2, 14-16

0. M. LELaxp, 64
G. J. Lipsro~E, 27
Line segment, 8, 86
Tine of worst fit, 184

Jacont, 159
Jacobian, 166 N\

259

Logarithmie form; generalized hy-
perbala, 204; of the exponential,
101, 108; special remarks, 195,
198, 201

Marginal total (rire total), 98

Matrix; for formation of mnormald
equations, 72, 155; notation, 166}
preparation of matrix, numericsl
examples, 79, 223, 224; retiprocal
ratrix, 19, 91, 169, 160, 162, 217;
see also Reciprocal piatriy

Maximum error, 161°0)

Torias Maveryd3

Mean, 18; rapid Tethod of calcula~
tion, 1§1,'\\s£andard error of mean,
21, 44; weighted, 19, 24, 26

Meg_ squsre error; of a difference,
42 of a sum, 42; percentage meen

R square error, 43; propagation of, 39
‘Method; of averages, 137; Bruyére,

123, 124; Cauchy, 138; least

squares, 13; selected points, 138;

Stephan, 121, 123; zerc sum, 137
MiceELs, 128, 212

Near indeterminacy, 160, 161, 163

V. A. NExrAOFF, 169

Normal deviates in units of standard
error, 252

Normal equations; direct solution,
18; exhibit in gymbols, 158; ex-
ponential, 102 &.; for conditicns
without parameters, 73, -108; for
curve fitting, 136; for fitting an
isotherm, 214; for geometric SOM-
ditions, 59; for the line, 174 £;
formation, 70 fi., 79 15%; freesing,
160; general, 55; hyperbola, 205,
206; in & pumerical example. 82;
pumber of equations, 56; parabola,
188 ff.; tebular golution, 19, 33, 66,
148, 150; unequivocal solutior, 156

K, A. NORTOK, 198
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Observations, rejection of, 171
Order, impottance of, 3, 4
Orthogonal functions, 10, 172

A. pe Formsr PaLmER, 27, 160

Parabola, 187

Parameters; adjustment of, 130;
approximate values, 52, 131, 147,
153; methods of obtaining, 137,
138; weight, 167

Karl Pranson, 27, 184, 186

Percentile, 211

P. Przzert, 142

Flane triangle, 7, 60, 64

Positive definite (normal equations),
58

Powers of 10, manipulation of, 224

Precision, 23

Prediction, 3, 129

Principle of least squares, 2, 14, 16

Prior value of » compared with
(eat), 230 N
Probable error, 169 S\

Probits, 210 "4
Product variance (COV&I;J’.&]?GB), 19,
160 ¢\
Propagation of EI‘I‘QT;\EI functions
of one variable, 3 in functions of
several variables,/ 38
Propagationsof- Inean SGUATC CITON,
40; of yaviamnce, 40; of weight, 40
RU’I‘E[\BQ Purres, 22

Quindratic form, 58
#Cyansi center, 181

Randomness; importance of order,
3, 4; Shewhart criterion, 6, 220;
tables for making random obser-
vabions, 252

Reciproeal mafrix, 19, 21, 156;
a5 a multiplier, 91, 218; calcula-~
tion of, 92, 162, 201; for the line,
176, 185; for the parabela, 190; in 8,

~

INDEX

numerieal example, 92, 217, 224;
order of, 95; see also Matrix

Reciprocal solution, 160, 165; in a
numerical example, 226

Reduced conditions, 52

Rejection of observations, 171

Residual, 14; caleulation of, 56, 158,
158, 216, 230; definition of, \UF
50; standardized, 22, 23; yz-@iqnce
of, 127; see also Sum of sjusares

Rim total (marginal total) N8

(i Rormxson, 137, LA8,67

Roob mean square,éoer, 42; sce also
Standard errors\

8; see Bumpohsmuares

Trang § Ssiispory, 159

Samplc,\frequencies; adjusted by
Bruyére method, 124; adjusted by

+\lgagt squares, 101 ff.; adjusted by

O\ Btephan method, 121; adjustment

a,
»l
N,

to expected marginal totals, 96 .

Sample surveys, 10, 31; of canned
goods, 240

Sampling errors, 10, 127, 240

SBanpling ratio, 98

Bampling variance, 160

Max BasuLy, 173

Hexry Scnvrrs, 160, 170, 177

Frawcis X. ScHTmMacHER, 231, 238

Schwarz-Christoffel inequality, 162

Second adjustment of parameicrs,
52, 180

Segmentsof aline, adjustment of, 9, 86

Selected points, method of, 52, 131,
138

SemeL, 159

Jomx 1. SmEma, 178, 175

Wairter A. SBuewreART, 6, 169, 171,
220; control chart, 220; ecriterion
of randomness, 6, 220

Significance; secientific, 12; statisti-
cal, 12, 30; tests of, 30, 169

H. SmwverstoNe (and Arrxen), 16
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Slice totuls, 110
Small errors; in functions of one
variable, 37; in functions of seversl
variables, 38; numericyl example, 41
Jouw H. Surrm, 201
T, Sarrrrr, 159, 160
Solation without Lagrange multi-
pliers, 62
Stability (randomness), 6
Standard deviation, 18; rapid method
of computing, 151
Qtandard ervor, 12, 15, 21; of a
amve, 167; of a function of the
parameters, 167; of a mean, 404
of adjusted parameters, 167; of
caleulated ordinates, 229
Standardized residuals, 22, 23
Statistical significance, 12, 30
Frepprrcx F. Sreemaw, 100, 121,
123
R. MELpRUM Srawant, 140
J. SrEvENs STOCK, 52 R
Sronmvr, 34, 1425 Student’s distri-
bution, 169
Sum cheek {corner chegkl\, 72, 155
Sum of squares (85 1%'20; eficct of
changes in unit.s,%; formulag for
8, 53, 163»16%; rewoved by
regressiony\#5; short expression,
56; spéGiglformulas, 58, 163, 164;
systemytic computation, 156
Surgeying problem, 74 ff.
Systematie solution of normal equa-
£\ tions, 156; form for computiation,
“ 158
¢ test, 34, 169
Tabular solution of normal equa-
tions, 19, 33, 66, 148, 150; exhibit
in symbols, 158
Taylor's series, 38, 41, 52, 139
Tegts of significance, 30, 169
Tippett’s numbers, 107, 219, 220,
252, 268

»d

201

Triangle problem, 60; without La-
grange multipliers, 62

True pointe, 133

True value, definition of, 4%

1. B. Tuckurvan, 161

Horace 8. UnLEr, 140

Unhbiased estimate of o, 27, 168

Uneguivoeal solution of norma}\%rm;-.—
tions, 156 NS ¢

\

Q

Vacaney; rate, 32; sainple survey of,
3l 457
Variance; analysi};)f, 29; of resid-
wils, 1273 \propagation of, 40;
samnpling, M0
Varane! fnefficient, 19, 21, 22, 46;
of% function of unit weight, 21;
{ 98 parameters, 160
A\ Variate, random, 21

Apmagsy WaLp, 137

Weight; definition of, 21; for loga-
rithmic transformation, 45, 200;
of adjusted parameters, 167; of
function of adjusted angles, 64;
propagation of, 40

Weights of functions after adjust-
ment, 68; numerical examples,
85, 94; short method of com-
puting, 90

1. D. Wzzp, 86

L. T. WHITTAKER {and G. RoBIN-
son), 137, 159, 167

Benjamiy WILLIAMSON, 53

E B. Wisox, 22

. Woursss, 212

T W. Wriane (and Hayrorp) G5

Frang Yaros, 172

TuropoRE YNTEMA, 201, 202

2 (Fisber), 28, 20

Pero sum, method of, 137
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